
NAVAL POSTGRADUATE SCHOOL
Monterey, California

THESIS

A GRAPHIC USER INTERFACE
FOR RAPID INTEGRATION OF

STEGANOGRAPHY SOFTWARE

by

David Raiman Wootten

March 1996

Thesis Co-Advisors: Cynthia E. Irvine
Michael J. Zyda

Approved for public release; distribution is unlimited.

DTIC QUALITY INSPECTED 3

19960612 079

THIS DOCUMENT IS BEST

QUALITY AVAILABLE. THE

COPY FURNISHED TO DTIC

CONTAINED A SIGNIFICANT

NUMBER OF PAGES WHICH DO

NOT REPRODUCE LEGIBLY.

REPORT DOCUMENTATION PAGE
Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time reviewing instructions, searching existing data sources
gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this
collection of information, including suggestions for reducing this burden to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson
Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

13. REPORT TYPE AND DATES COVERED 1. AGENCY USE ONLY (Leave Blank) I 2. REPORT DATE
March 1996 Master's Thesis

4. TITLE AND SUBTITLE
A GRAPHIC USER INTERFACE FOR RAPID INTEGRATION OF
STEGANOGRAPHY SOFTWARE

6. AUTHOR(S)

Wootten, David, R.

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Naval Postgraduate School
Monterey, CA 93943-5000

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESSES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the
Department of Defense or the United States Government.

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Steganography is a method an individual uses to secretly communicate, whereby the transmitting agent hides a
message within some medium, so that only an intended recipient can detect the message's presence. Researchers
who apply this methodology to digital imagery currently have no X Windows-based graphic user interface soft-
ware package through which they may aggregate, test, and demonstrate their steganography programs, Such a
package would contain features to encode data to and extract data from digital imagery, convert the files to other
graphic file formats, display imagery, and offer some utility to analyze change between unencoded original images
and their encoded equivalent. The steganography software development package presented in this thesis, named
Steganography Toolbox, satisfies these requirements. It provides the above described features, plus the ability to
delete unneeded files, all in an X Windows graphic user interface. It permits the user, who writes a separately exe-
cutable steganography program, to attach it to the graphic interface with little additional programming effort. The
thesis describes a method to create a menu-selected dialog box containing the necessary widgets, which invokes
the desired program through a system() call. The thesis includes Steganography Toolbox's structured design docu-
mentation, from system requirements to process specifications. The thesis also describes how requirements-based
software tests were performed on each module to verify proper function and error-handling.

14. SUBJECT TERMS
Graphic user interface, steganography.

15. NUMBER OF PAGES

141
TSTTncTCBBE"

17. SECURITY CLASSIFICATION
OF REPORT

Unclassified

18. SECURITY CLASSIFICATION
OF THIS PAGE

Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT

Unclassified

20. LIMITATION OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18

Author:

Approved By:

Approved for public release; distribution is unlimited

A GRAPHIC USER INTERFACE
FOR RAPID INTEGRATION OF

STEGANOGRAPHY SOFTWARE

David Raiman Wootten
Lieutenant, United States Naval Reserve

B.A., University of California, Santa Barbara, 1987

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
March 1996

9L Y.
David Raiman Wootten

Cynrfiia E. Irvine, Thesis Co-Advisor

Ted Lewis, Chairman,
Department of Computer Science

in

IV

ABSTRACT

Steganography is a method an individual uses to secretly communicate, whereby the

transmitting agent hides a message within some medium, so that only an intended recipi-

ent can detect the message's presence. Researchers who apply this methodology to digital

imagery currently have no X Windows-based graphic user interface software package

through which they may aggregate, test, and demonstrate their steganography programs,

Such a package would contain features to encode data to and extract data from digital

imagery, convert the files to other graphic file formats, display imagery, and offer some.

utility to analyze change between unencoded original images and their encoded equiva-

lent. The steganography software development package presented in this thesis, named

Steganography Toolbox, satisfies these requirements. It provides the above described fea-

tures, plus the ability to delete unneeded files, all in an X Windows graphic user interface.

It permits the user, who writes a separately executable steganography program, to attach it

to the graphic interface with little additional programming effort. The thesis describes a

method to create a menu-selected dialog box containing the necessary widgets, which

invokes the desired program through a system() call. The thesis includes Steganography

Toolbox's structured design documentation, from system requirements to process specifi-

cations. The thesis also describes how requirements-based software tests were performed

on each module to verify proper function and error-handling.

VI

TABLE OF CONTENTS

I. INTRODUCTION 1
A. PURPOSE 1
B. OVERVIEW OF STEGANOGRAPHY 1

1. Definition 1
2. Historical Perspective 2
3. Recent Interest 3

II. BACKGROUND 5
A. OVERVIEW AND SCOPE 5
B. HUMAN VISION 5

1. Physiology. 5
2. Features of Color Perception 8

a. Retinal Sensitivity 8
b. Influences on Retinal Sensitivity. 9

3. Principles of Image Analysis 10
a. Absolute and Relative Size 1
b. Shape 1
c. Shadow. 1
d. Tone or Color. 1
e. Texture 1
f. Pattern 12
g. Location, Association and Convergence of Evidence
 12

C. COLOR MEASUREMENT AND ENCODING 12
1. Look Up Tables (LUT's) 12
2. National Television Systems Committee (NTSC) 12
3. YIQ 13
4. RGB 13
5. CIE 14
6. HSI 15

D. GRAPHICS FILE FORMATS AND FILE COMPRESSION 16
1. Graphics Files 16

a. Vector Data 17
b. Bitmap Data 17

2. Elements of Graphics Files 17
3. Data Compression 18

a. Pixel Packing 18
b. Run Length Encoding 18
c. Lempel Ziv Welch (LZW) 18
d. CC1TT Encoding 19
e. Joint Photographic Expert's Group (JPEG) 19

E. CURRENTLY AVAILABLE STEGANOGRAPHY SOFTWARE
 19

vu

1. Hide and Seek Version 4.1 19
2. StegoDOS 19
3. White Noise Storm 20
4. S-Tools Version 3 20
5. Stego Version 1.0a2 20

IE. FEATURES OF STEGANOGRAPHY TOOLBOX 23
A. GENERAL DESCRIPTION 23
B. FILE MENU 24

1. Description 24
2. Submenu Selections 24

a. Convert Format 24
b. Delete File 24
c. Exit 24

C. ENCODE MENU 25
1. Description . 25
2. Submenu Selections 25

a. Simple Replace 25
b. RGB Vector. 25

D. EXTRACT MENU 26
1. Description 26
2. Submenu Selections 26

a. Simple Replace 26
b. RGB Vector. 26

E. DISPLAY MENU 27
1. Description 27
2. Submenu Selections 27

a. Display Image 27
b. Generate Difference Image 27
c. Display Histogram 28

F. HELP MENU 28
IV IMPLEMENTING STEGANOGRAPHY TOOLBOX 29

A. THE DEVELOPMENT PACKAGE: SIMPLE USER INTERFACE
TOOL (SUIT) 29
1. General Description 29
2. Components of the Typical SUIT Graphic User Interface

Implementation 30
3. SUIT Properties and Inheritance 36
4. Installing SUIT 38

B. HOW STEGANOGRAPHY TOOLBOX WAS BUILT. 38
1. Purpose 38
2. Motivating Considerations 39
3. Coding the User Interface 40

a. Creating the External control Loop 40
b. Creating the Main Menu 41
c. Creating Submenus 41
d. Callback Functions 41

Vlll

e. Displaying Histogram Data 44
f. Creating Help Widgets 45
g. Communication From the Invoked Program back

to the GUI.... 45
h. How Exit Works 46

C. A SUGGESTED METHOD FOR IMPLEMENTING
ADDITIONAL FEATURES IN STEGANOGRAPHY
TOOLBOX 46

V. REQUIREMENTS TESTING 47
A. TEST OVERVIEW 47
B. TEST GOALS 48
C. TEST GOAL CLASSIFICATION 52
D. TEST GOAL AGGREGATES 53
E. TEST SET-UP. 54

1. String Formation 54
2. Valid Bit Code Density Test 55
3. File Selection, Opening, and Comparison 57
4. System() Invocation 59
5. Proper Lnage/Datafile Ratio 60
6. Widget Organization 61
7. Widget/Window Activation and Destruction 61

F. CONCLUSIONS 63
VI SUGGESTIONS FOR FUTURE DEVELOPMENT 65

A. A SUMMARY ADMONITION 65
B. SUGGESTIONS FOR FUTURE RESEARCH 65

1. Develop Algorithms to Encode Into Other Digital Media 65
2. Investigate Human Change detection Thresholds for

Digital Media 65
3. Expand Statistical Representation of Data 66
4. Develop Algorithms That Survive File Compression 66

VII. STEGANOGRAPHY TOOLBOX VERSION 1.0 USER'S MANUAL.....! 67
A. INTRODUCTION 67
B. FILE MENU SELECTIONS 68

1. Convert File 68
a. What It Does 68
b. How to Invoke It 68

2. Delete File 69
a. What It Does 69
b. How to Invoke It 69

3. Exit 71
a. What It Does 71
b. How to Invoke It 71

C ENCODE MENU SELECTIONS 71
1. Simple Replace 71

a. What It Does 71
b. How to Invoke It 72

IX

2. RGB Vector 73
a. What It Does 73
b. How to Invoke It 73

D. EXTRACT MENU SELECTIONS 74
1. Simple Extract 74

a. What It Does 74
b. How to Invoke It 75

2. RGB Vector Extract 76
a. What It Does 76
b. How to Invoke It 77

E. DISPLAY MENU SELECTIONS 78
1. Display Image 78

a. What It Does 70
b. How to Invoke It 78

2. Generate Diff Image 79
a. What It Does 79
b. How to Invoke It 80

3. View Histogram 80
a. What It Does 80
b. How to Invoke It 81

F. HELP MENU SELECTIONS 82
1. Browse Help 82

a. What It Does 82
b. How to Invoke It 82

2. Help From Within Toolbox Panel 83
a. What It Does 83
b. How to Invoke It 83

APPENDIX A. SOFTWARE DESIGN 85
1. Scope 85
2. Hardware, Software and User Interface 86
3. Major Design Constraints and Limitations 87
4. Reference Documents 87
5. Process Specification Outline 87
6. Process Specifications 88

APPENDKB. SOURCE CODE 97
1. INTRODUCTION 97
2. TOOLBOX.C 97
3. TOOLBOX_HELP.H 119

LIST OF REFERENCES 125
INITIAL DISTRIBUTION LIST 129

I. INTRODUCTION

PURPOSE

The aim of this thesis is to produce a software implementation that performs

steganographic encoding and decoding of digital images. A further objective is to make

this software suitable for continued development of steganography software

implementation and research at Naval Postgraduate School.

B. OVERVIEW OF STEGANOGRAPHY

1. Definition

Steganography is a method of concealing information within a medium; it

is similar to encryption in this respect It differs from encryption in that while the undesired

viewer of a message may see an encrypted data string before him, it has been rendered

meaningless by the encryption. Steganography, on the other hand, conceals the very

presence of the message; if the unintended observer could see, hear or otherwise sense the

message, he would readily understand it. It relies on the medium's capacity to hold the

encoded message as well as enough of the original data of the medium not to invoke the

viewer's suspicion the medium was changed. Stated another way, the medium must be able

to hold more information than the viewer can sense. Kuhn (1995) state this in the following

description: "In contrast to cryptography, where the enemy is allowed to detect, intercept

and modify messages without being able to violate certain security premises guaranteed by

a cryptosystem, the goal of steganography is to hide messages inside other harmless

messages in a way that does not allow any enemy to even detect that there is a second secret

message present." It is readily apparent that the strength of this method is limited in the

sense that encoded data can be readily extracted if the enemy knows which media are

encoded, and the method of encoding. It can be considered a useful augmentation to

encryption if the party holding the message doesn't want anyone to think he or she has

something to hide, by encrypting data. It is in this environment, with the recent surge in

development of digital telecommunication and the resulting public concern over issues of

security and privacy of data, that interest in steganography has bloomed. Digital media

readily lend themselves to steganographic application because the information-carrying

capacity of many digital files, especially digital image and audio files, is much greater than

a human's ability to discern change in that file.

2. Historical Perspective

The term "steganography" comes from the words "steganos" (covered or

secret) and "graphy" (writing or drawing). Brown (1995) states, "steganographic methods

have long been a favorite of military and political leaders, who have been devising

ingenious ways of hiding secret messages for thousands of years." He further describes,

from the Histories of Herodotus ,a Medean nobleman who hid a message for an ally in the

belly of an unskinned rabbit, to be carried by his servant, who assumed the guise of a

hunter. Again, as described by Johnson (1996) regarding the same ancient document, "In

ancient Greece text was written on wax-covered tablets. In one story, Demeratus wanted to

notify Sparta that Xerxes intended to invade Greece. To avoid capture [of the message], he

scraped the wax off the tablets and wrote a message on the underlying wood. He then

covered the tablets with wax again. The tablets appeared to be blank and unused, so they

passed an inspection by sentries without question.

Invisible ink was another common application of steganography in World

War II. These substances appeared transparent and could be written on paper that wouldn't

arouse suspicion. The ink could be rendered readable by some transformation process,

usually heat or by some other chemical reaction. Johnson (1996) lists milk, vinegar, fruit

juices and urine as commonly-used invisible inks. Brown (1995) describes how the Nazi

spy George Dasch wrote messages on napkins using copper sulfate; the recipient could

make the message readable by exposing it to ammonia fumes.

Other steganographic applications used in World War U were the

"microdot" described by Brown (1995) as "a photograph the size of a printed period that,

when developed, could reproduce a standard-sized typewritten page with perfect clarity."

He additionally describes the United States Marines' use of Navajo Indian "codetalkers" to

radio messages in their obscure and rare native tongue. Secrecy was in this case verified by

identifying all the non-Navajo speakers of the language. All twenty-eight had no

connection with the Germans of Japanese. Additionally, the codetalkers spoke a slang

dialect that those who knew Navajo but were unfamiliar with the slang couldn't understand.

3. Recent Interest

While the recent development of digital telecommunications has drastically

improved the ability to transmit information, the non-secure characteristic inherent to the

medium through which the messages are sent (e.g., Twisted Pair) requires some method be

applied to ensure secrecy and integrity of those messages. Public Key Encryption is a

popular method to ensure these protections, as noted by the popularity of Pretty Good

Privacy. Those concerned with privacy in an increasingly data-invasive world suggest that

outside viewers don't even need to know that encrypted data is present. This suggests to the

viewer that the holder of encrypted data "has something to hide," and there is no reason the

outside viewer even needs to know this information. It it this mindset that has fostered

renewed interest in steganography. Kurak and McHugh (1992) demonstrated the use of

steganographic encoding of "nonclassified" imagery with supposedly classified data,

showing the little apparent change in the encoded result, when directly compared to the

unencoded original. Since then, resurgent interest started informally, as internet discussion

groups and then as a steganography news mailing list. Such significant interest has emerged

in the last year that Anderson (1996) has issued a call for papers on the first Workshop on

Information Hiding. Johnson(1995) has evaluated some of the steganography shareware

available on the Internet, and Aura (1995) attempts to lay a foundation of terminology for

steganography.

II. BACKGROUND

A. OVERVIEW AND SCOPE

Applied steganography relates several distinct research areas; to provide a proper

basis for the study of steganography, one would, for instance, necessarily also want to

explore human factors: physiology and psychophysiology of human vision, and related

genetic and pathological influences on visual perception. (Human factors research is a

massive field in itself, so only a cursory description of pertinent topics in this area are

discussed.)The primary application of this thesis relates to steganography performed on

digital imagery, so some background regarding principles and techniques of image

interpretation should also be included. This background is further restricted to

steganography applied to an image's color. No attempt will be made to describe

steganography applied to other image features, such as object size shape texture, etc.

Currently implemented color metrics shall be identified, and some information regarding

image files and file compression is also discussed. Finally, some currently available

steganography shareware programs are presented.

B. HUMAN VISION

1. Physiology

A useful and unambiguous definition of "seeing" is provided by Cornsweet

(1970): "An observer will be said to see a property of the external world if it can be

demonstrated that he is assimilating the information that the property is present, through

the interaction between his anatomy and the light carrying that information." Sabins (1978)

states that vision is the human's most heavily relied-upon sensory system and accounts for

most of the environment's input to the brain. This system can be considered to contain the

eyes, optic nerves and brain, but for the purpose of this thesis structure of the eye alone is

discussed. Figure 2-1 shows the structure of the human eye.

RETINA

-CORNEA

■ AQUEOUS HUMOR
I I' LINE OF SlliHI I t T I

FOVEA-
PUPIL

IRIS

OPTIC NERVE

Figure 2-1 from Sabins (1978).
Structure of the Human Eye.

Light enters through the cornea, separated from the lens by a clear fluid

called aqueous humor. The iris, the pigmented part seen when viewing the anterior eye,

controls the size of the pupil. This is the hole in the iris that controls the amount of light

passing through the lens, and it can vary its opening area by a factor of 16:1. Pupillary

contraction not only limits light transmittance through the center and optically best portion

of the lens, but when constricted, assists in increasing depth of field while viewing nearby

objects, much like a camera aperture. A common misconception regarding the function of

the lens is that it refracts light entering the eye to form an image on the retina. Light actually

refracts most at the cornea, where the coefficient of refraction is greatest (1.0 for air, 1.3

for the cornea). The lens is instead important for accommodating, that is, focusirtgbetween

near and far objects. Muscles on the periphery of the lens change it's thickness to perform

this. The image is displayed inverted on the retina, a thin sheet if photosensitive nerve cells;

the location on the retina where the visual axis contacts the retina is called the fovea. This

region has the greatest concentration of neuroreceptors designed for photopic (daylight

color) vision, as shown in Figure 2-2, from Cornsweet (1970). These sensory neurons are

descriptively called cones; photoreceptors designed for scotopic (low-light) vision are

similarly called rods. There is an additional distinction between foveal cone receptors,

which are more slender (and physically resemble rod shape) and more densely packed

together, and peripheral cones, which have the more characteristic conical shape. The

combination of this ability of the light-transmitting structures of the anterior eye to produce

a focused retinal image, along with the concentration of foveal receptors determine spatial

resoluton. This is the ability to visually discriminate two closely-spaced objects.Myopia

(near-sightedness) and hyperopia (far-sightedness) are common conditions in which

aspherical eye shape induces reduced resolving power.

Visual 4xis

Fovea Optic nerve

0" 60" 50" 40° 30° 20° 10" 0° 10" 20' 30" 40° 50" 60° 70' 80°
Temporal on retina

Perimetrk: angle (deg)
tvdSal

Figure 2-2 from Cornsweet (1970).
Ocular Neuroreceptor Density As
a Function of Angle From Fovea.

2. Features of Color Perception

a. Retinal Sensitivity

Sheppard (1968) states that "color vision has it's highest

development in a foveal region approximately 2 degrees in extent." Consequently, most of

the research in color perception is limited to data taken in this foveal field. Studies of the

kinetics of cone pigments by Rushton (1963) and Wald (1964) provide estimates of the

absorption spectra of cone pigments, shown in Figure 2-3 from Cornsweet (1970). Three

different color systems were identified in the normal human eye, with color sensitivity

based on the absorption spectra of the different pigments.

Si si
SI

°D :=
.£ >*

1 y

ll

0.20

o.i a

0.16

0.14

0.12

0.10,

0.DB

\}.d(,

O.Oi

ci.no

J 1 i M 1 B/ I /%A
f i_

— / f\ \ —.

—
j

—

-

—
/

\ . —

— L —

— 1 \\

— / ' /
\

si ^<Li i | V
4fl0 440 4B'J 5,M b6D A00 6-10 <tffl

Figure 2-3 from Cornsweet (1970). Color Sensitivity of
the Human Eye.

The peaks of the absorbtion curves occur at 440 nm, 550 nm, and 580 nm

(these correspond to the approximate hues blue, green, and red, respectively), and the

system that had peak absorbtion at 550 nm (green) also had the greatest relative absorbtion

of all three color systems

b. Influences On Retinal Sensitivity

Dark and light adaptation is an important factor related to color

perception. Wald (1945) showed that if a subject with normal vision is initially light-

adapted and placed in a dark environment, photopic sensitivity diminishes and scotopic

sensitivity increases after several minutes. This constitutes dark adaptation. Since scotopic

receptors are a separate vision system not related to the three color vision systems, color

perception is also impaired.

Riggs, et al (1953) determined that eye movement is a factor in color

perception. They presented the subject with a low intensity filament as a viewing target,

and created a device which stabilizes this image on the subject's fovea. Within seconds, the

subject reported the initially clear and sharp image disappeared, and the field of view

became uniformly gray. This was labeled the temporal modulation transfer property, and is

exhibited whenever a viewer stares fixedly at a low-spatial-frequency target such as figure

2-4, from Comsweet (1970).

Figure 2-4 From Cornsweet (1970). Demonstration of
Temporal Modulation Transfer Property. Staring at the Right-Handed

(Low Spatial Frequency) Target Causes Optic Neural Saturation,
Making the Disk Seem to Disappear.

Genetic deficiencies of the visual system may also limit color

perception, commonly called "color blindness." Cornsweet (1970) discussed

monochromacy and dichromacy as such conditions, in which respectively only one or two

color systems participate in photopic vision, vice the normal three. The monochromat may

perceive two different wavelengths of light as indistinguishable if both are displayed at the

same intensity. The dichromat views two presented colors as indistinguishable if the same

relative percentages of cones in his 2 active systems are stimulated. As a simplistic

example, suppose two subjects, one with normal (trichromatic) color vision and the other

with dichromatic vision view a pair of differently-colored objects, objects A and B. Objects

A and B are both colored in such a way that stimulate 20 percent of the trichromat's "blue"

color system receptors and 20 percent of his "green" color system receptors, but A

stimulates 30 percent of his "red" system receptors, whereas B stimulates none. The

trichromat will then recognize objects A and B as differently-colored. Conversely, the

dichromat examines objects A and B, and his "blue" and "green" color system receptors

are stimulated in the same fashion as those of the trichromat, but the dichromat has no "red"

color system receptors, and therefore notes no color difference between objects A and B.

Pathologic conditions may also influence color perception. Daley,

Watzke and Riddle (1992) describe the decrease in color sensitivity in the red and blue

wavelengths of the diabetic.

3. Principles of Image Analysis

The aim of steganographically encoding data within a digital image is to do

so without raising the suspicion of the unintended observer that the image was manipulated.

If the observer is someone trained to analyze a digital image, then it is helpful in the study

of steganography to understand what an analyst looks for in the image. Paine (1981)

describes principles of photographic interpretation; while processes such as photographic

geometric rectification may be performed differently than geometric rectification on a

digital image, once the product is ready for viewing by the human analyst, the principles

are essentially the same.

10

a. Absolute And Relative Size

Once the absolute size of a feature of interest is determined, the

absolute size of other features of interest may be determined by comparison of relative size

with the absolute.

Shape

Many objects may be identified by their two or three-dimensional

shape. Vertical resolution is gained either through altimetry over the instantaneous field of

view or by stereoscopic analysis of a pair of images of the same feature from different

sensor locations.

c. Shadow

Shadows give the analyst a clue to profile shapes and relative sizes

of structures. It is typically important to know the date time and location of the image, to

determine the azimuth and altitude of the sun, or the direction of other emitters.

d. Tone Or Color

Digital imagery intended as photographic reproductions attempt to

faithfully reproduce the various sensed colors. In other digital imagery, the knowledge of

exact color may not be necessary or even desirable. Pixels with similar "digital signatures"

(combinations of brightness values in different sensor channels) may be assigned a

pseudotone or pseudocolor entirely independent of it's "real" color.

e. Texture

These are tonal or color changes on an object of interest that can be

identified in a characteristic arrangement, typically ranging from fine to coarse.

11

/. Pattern

A spatial arrangement of objects. This differs from texture in that

texture describes change within a single object.

g. Location, Association, And Convergence of Evidence

These principles are based on deductions the image analyst draws

from other principles, plus any a priori knowledge has of the image. The analysis of a 6"

diameter pipe may be identified as a gas line in one country and an irrigation pipe in

another. Association is similar to location: a runway may be identified as a cropdusting

airstrip if it adjoins farmland, whereas it might be labeled a community airport if located

next to low buildings. Convergence of evidence is described as drawing together features

or other information of an image to make an interpretation. The presence of dirt roads and

stacked cut trees near a long building may lead the analyst to label the building as a sawmill.

C. COLOR MEASUREMENT AND ENCODING

Most images use color vice monochrome. Different color measurement schemes

have been produced, and each has strengths and weaknesses, depending on the

implementation. Russ(1995) provides a good introduction.

1. Look Up Tables (LUT's)

These are used commonly in scientific visualization, where the real color

may not be of interest, but some other quality of the object is represented: elevation,

velocity, and density are examples.

2. National Television Systems Committee (NTSC)

This scheme was developed during the transition of monochrome television

broadcast to that of color television. It adds the color information within the same

bandwidth the monochrome signal was sent. The result is that color pictures have less

12

spatial resolution than monochrome. From typical viewing distances the viewer will

tolerate the less sharply bounded color, and interprets the colors as bounded. Super VHS

video was the subsequent improvement to NTSC, in that color information is separated

from brightness information in recording and playback.

3. YIQ

This color scheme is commonly used in inexpensive solid-state color

cameras where the photosensor chips have alternating vertical red, green, and blue sensor

rows. This causes a reduction in lateral spatial resolution, since three sensors record the

brightness values from one instantaneous-field-of-view (IFOV). More expensive cameras

use beam-splitters to create three copies of the IFOV and route it to three separate

monochrome cameras. YIQ encoding is related to RGB encoding in the following way: Y

is the Luminance signal, a combination of the red, green, and blue, color intensities in the

same proportion that the human eye is sensitive. I and Q color signal components are used

for hardware compatibility. I represents red minus cyan, and Q represents green minus

magenta. Table 2-1, taken fromRuss (1995) shows the relationship between YIQ and RGB.

Y = 0.299R + 0.587G + 0.114B R= 1.000Y + 0.9561 + 0.621Q
I = 0.596R + 0.274G + 0.322B G=1.000Y - 0.2721 + 0.647Q
Q = 0.211R + 0.523G + 0.312B B =1.000Y - 1.1061 + 1.703Q

Table 2-1 From Russ (1995). Conversion Between
RGB and YIQ Color Scales.

4. RGB

This scheme comes from the way camera sensors and display phosphors

work. Figure 2-5, from Russ (1995), shows the RGB color space. Other encoding schemes

better represent human perception, though this one is easiest to implement in hardware.

13

Blue Magenta

Cyan

Green

/

i

/
I

/

/
/ Black

 ► V If Yellow

Red

Figure 2-5. RGB Color Space.

CIE

The Commission Internationale L' Eclairage, or CIE chromaticity diagram

is the oldest attempt to measure color the way it is perceived. Figure 2- 6, from Russ (1995)

shows this two-dimensional diagram, which represents color components. A third axis,

luminance, corresponds to panchromatic brightness, that would produce a monochrome

image. The other two scales, x and y, represent a pair of values that describe all visible

colors. A drawback in the CIE diagram is that it does not indicate the variation in color

discerned by the eye, from Russ (1995) and does not directly correspond to hardware

implementation.

14

(l.S
520

"Uli

V [(irecn f\

Ö.fi

1 Cyan f

IU

i_4i)0 1

White 2\

Ü.2 \ Blue
^ Magenta j*r

0
(l 0,2 0.4 0.6 x Ü.8

Figure 2-6 From Russ (1995).
CIE Chromacity Diagram.

6. HSI

The Hue, Saturation, Intensity color encoding approach better corresponds

to hardware operation and human vision. Hue is the tint described by it's wavelength.

Saturation is the amount, or purity, of color present, for example the distinction between

pink and red. Intensity is the amount of light it emits, in other words, the difference between

dark red and light red. Figure 2-7 shows the HSI colorspace and Table 2-2 indicates the

relationship between RGB and HSI; both taken from Russ (1995).

15

White

Black

Figure 2-7 From Russ (1995).
Hue Saturation Intensity Color System.

H = r|-atan({(2xJR-G-B)/(73) x (G-B) } +it);(G<Ä)]/(2ji)

/ = (R + G + B)/3
S = 1- [min((R,G,B)/I)]

Table 2-2 From Russ (1995). Conversion from RGB Coordinates
to HSI Coordinates.

D. GRAPHICS FILE FORMATS AND FILE COMPRESSION

1. Graphics Files

Murray and VanRyper (1994) describe graphics files as "...files that store

any type of persistent graphics data (as opposed to text, spreadsheet or numerical data, for

16

example), and that are intended for eventual rendering and display. There are many

different file formats in which graphics data are stored, but they can be generalized into two

classes: vector and bitmap (formerly called raster).

a. Vector Data

Lines, polygons or curves are represented in vector data by

numerically specifying keypoints and other attributes like color and line thickness.

The rendering program uses a set of rules along with the vector data to draw objects.

b. Bitmap Data

This type of data is created from a set of values that specify the color

of each picture element (pixel) of the image. Data in a header file usually specifies the

dimensions of the rendered image, it's bit depth (the number of bits required to paint each

pixel), interlacing method, and so on. These two classes of graphics data can be used in

three different file formats: bitmap, vector, and metafile. As the former two names imply,

bitmap format contains bitmap data, and vector file format holds vector data, while metafile

format can hold both bitmap and vector data simultaneously.

2. Elements Of Graphics Files

A graphics file is composed of data structures that Murray and VanRyper

(1994) call file elements. They describe the following data structures: fields, tags and

streams. Fields are structures that are fixed both in size and location within the file. They

are positioned either as an absolute offset from the beginning of the file, or as a relative

offset from some other element Tags may vary in size and position in graphics files, but

can be optionally specified in both size and position as well. They may contain fields or

tags. While tags and especially fields aid in random access, streams, conversely must be

read sequentially. The trade-off is that sequential data can be found more quickly than

random access data, especially if the stream is of a large body of data.

17

3. Data Compression

A large drawback of graphics data is the sheer size of the uncompressed

data. Data compression permits the data to be stored in a file of manageable size, though

with some compression methods, specifically "lossy", some of the graphics information is

lost in the compression process. Murray and Van Ryper (1994) describe some common

compression algorithms:

a. Pixel Packing

Though not a compression method per se, it is an efficient method

used to store data in contiguous memory bytes. If it is known, for example, that that an

image encodes a pixel value using only four bits, then the remaining bits in every byte of

the file are wasted. A pixel packing algorithm fills the remaining bits of one pixel with the

next pixel's value , and hence minimizes such waste.

b. Run Length Encoding

Run Length Encoding (RLE) reduces the size of repeating

characters (called a run) into sets of two-byte RLE packets. The first byte of the packet

contains the length of the run. Permissable values are 1 to 128 and the value 256. The

second byte contains the run value, the character that would be repeated for the run length

in the uncompressed file.This method is commonly used in bitmap formats like .BMP,

.TIFF, and .PCX, and reduces redundant data.

c. Lempel Ziv Welch (LZW)

This type of compression is used in .GIF and .TIFF file formats. It

builds a translation table called a data dictionary when it writes a code value for a string not

already contained in the dictionary. It writes the dictionary code in the output file in place

of the string.

18

d. CCITT Encoding

This compression is used for facsimile transmission, standardized

by the International Telegraph and Telephone Consultative Committee; it implements

Huffman coding as part of the standard.

e. Joint Photographic Expert's Group (JPEG)

This is a set of compression standards that work well for continuous-

tone imagery, that is, those that show a gradient of brightness tonal change, vice distinct

boundaries of brightness value changes. It uses a coding scheme based on the Discrete

Cosine Transform algorithm.

E. CURRENTLY AVAILABLE STEGANOGRAPHY SOFTWARE

There are several shareware and freeware programs available via file transfer

protocol (FTP) from the Internet. This section provides a brief description of their

functionality. Most of this information was compiled from Johnson (1996).

1. Hide And Seek, Version 4.1

This freeware, created by Maroney (1994), is a MS DOS program that

embeds and extracts data from .GIF format image files. It will embed up to 19,000 bytes

(the author emphasizes not 19Kb) into a .GIF file of maximum size 320 x 480 pixels. It

traverses through the graphics data stream and randomly selects image bytes to encode with

data from a user-specified message file. It uses Least Significant Bit (LSB) replacement to

encode, removing the LSB of the image byte and replacing it with a bit of message file data.

It also uses IDEA to encrypt the program-specific header information.

2. StegoDOS

This collection of programs, also known as Black Wolf's Picture Encoder

(named after it's anonymous creator) is also freeware. It will encode data files up to 8Kb

19

in size within a picture file of maximum size 320 x 480 pixels and of 256 colors. It doesn't

specify any specific image format; additionally, the user must supply the graphics file

display and screen capture software to use this utility . It encodes the screen capture file

with data using the LSB replacement method, and since it uses screen capture, doesn't

overwrite the original image. It is cumbersome to use, because it requires the user to

perform multiple steps to encode and extract data.

3. White Noise Storm

This MS DOS shareware was created by Arachelian (1994) It also uses LSB

encoding and extraction method on .PCX format files. This file format was originally used

by "PC Paintbrush" before Microsoft bought rights to it, renamed it Microsoft Paintbrush,

and bundled it with Windows 3. White Noise Storm additionally encrypts the message file

prior to encoding into the image, and randomly encodes image bytes.

4. S-Tools Version 3

This shareware by Brown (1994) operates under MS Windows 3.0; it

encodes and extracts using LSB replacement on not only .BMP and .GIF files, but on audio

.WAV files. It also has a utility to steganographically encode unused disk space on floppy

disks. It supports 24 bit .BMP color and supports encryption of the input message file using

IDEA, MPJ2, DES, and NSEA. The graphic user interface makes it easy to use for those

accustomed to using MS Windows.

5. Stego Version 1.0a2

This shareware program, created by Machado (1994) operates under Mac

OS and performs encoding and extraction on the 8, 16 and 32 bit .PICT files used in the

Apple Macintosh platform. It encodes using LSB replacement for each of the red, green,

and blue color values, and in the case of indexed color, performs the replacement on the

index values. It allows the user to display the image prior to and after encoding. A drawback

20

of this program is that the input image is also the output image, and therefore the original

image is corrupted.

21

22

III. FEATURES OF STEGANOGRAPHY TOOLBOX

A. GENERAL DESCRIPTION

The intent in creating Steganography Toolbox was to provide a platform for the

study and development of steganography algorithms. It provides the functionality neces-

sary to convert digital image files to other graphic file formats, display images, stegano-

graphically encode into and extract previously encoded data from those images using

steganographic algorithms, and generate simple statistics. It fills a void of need for the stu-

dent conducting research in steganography at Naval Postgraduate School since it is

designed to operate in an X Windows environment. To date, no other software performs

steganography using a graphic user interface and runs on the UNIX operating system; all

other implementations are designed for use on personal computers, or as a command-line

language implementation for UNIX. Figure 3-1 shows the menu structure of Steganogra-

phy Toolbox.

Steganography Toolbox Main Menu

& ile

I
Convert
Format

Encode

_J
Extract Display Help

Exit
1 II I I

Simple RGB Simple RGB Display Generate
Replace Vector Extract Extract Image Statistics

Delete
File

Display
Difference
Histogram

Figure 3-1. Menu structure of
Steganography Toolbox

23

B. FILE MENU

1. Description

The File menu selection permits file manipulation and program exit. It con-

tains submenus Convert Format and Exit.

2. Submenu Selections

a. Convert Format

Convert Format will convert an image of JPEG, CompuServe GIF

and Many other popular image formats to Microsoft Windows Bitmap format. While none

of the steganographic encoding or extraction modules in this version of the Steganography

Toolbox accept graphics file formats other than Microsoft Windows Bitmap, Currie and

Campbell(1996) studied survivability of data encoded in .BMP format and converted to a

file format that uses lossy compression, noting any change in the result from the original

.BMP file. As is discussed in the following chapter on Suggestions for Future Develop-

ment, It is the author's belief that steganographic encoding that survives file compression

is a logical next step in research, so the additional functionality was included in this ver-

sion of Toolbox.

b. Delete File

The Delete File selection permits the user to browse the directory

and delete unwanted files. The user must respond to a confirming dialog box to complete

the deletion.

c. Exit

The Exit selection closes all windows not associated with indepen-

dently running processes and terminates the program. Since some of the selections, like

Display Image, operate as a UNIX system call to XV graphic image viewing utility and are

24

made to run independently, windows associated with processes as these must be closed

separately.

C. ENCODE MENU

1. Description

The Encode menu selection performs steganographic encoding of digital

imagery. This version performs such encoding on images in Microsoft Windows Bitmap

format only. It contains submenu selections Simple Replace and RGB Vector.

2. Submenu Selections

a. Simple Replace

The Simple Replace menu selection displays a panel through which

the user supplies an input image (in .BMP format), a data file to be encoded into the image,

the encoding "density", that is, the number of least significant bits to strip off the image

bytes during the encoding process, and an output file name. It then performs simple

replacement steganographic encoding with software adapted from Currie and Campbell

(1996) an writes the result to a file of the indicated name. The user can view a help panel

on this selection or cancel the selection altogether.

b. RGB Vector

The RGB Vector menu selection displays a panel through which the

user supplies an input image (in .BMP format), a data file to be encoded into the image,

and an output file name. It then performs RGB Vector steganographic encoding with soft-

ware adapted from Currie and Campbell (1996) an writes the result to a file of the indi-

cated name. The user can view a help panel on this selection or cancel the selection

altogether.

25

D. EXTRACT MENU

1. Description

The Extract menu selection performs data extraction from previously steg-

anographically encoded digital imagery. This version performs such extraction on images

in Microsoft Windows Bitmap format only. It contains submenu selections Simple Replace

and RGB Vector.

2. Submenu Selections

a. Simple Replace

The Simple Replace menu selection displays a panel through which

the user supplies an input image (in .BMP format) that was previously encoded using the

Simple Replacement method, and a file name for the output extracted data. It then per-

forms data extraction from the previously encoded image, and writes the result to a file of

the indicated name. The software which performs the extraction algorithm is adapted from

Currie and Campbell (1996). The user can view a help panel on this selection or cancel the

selection altogether.

b. RGB Vector

The RGB Vector menu selection displays a panel through which the

user supplies an input image (in .BMP format) that was previously encoded using the The

RGB Vector method, and a file name for the output extracted data. It then performs data

extraction from the previously encoded image, and writes the result to a file of the indi-

cated name. The software which performs the extraction algorithm is adapted from Currie

and Campbell (1996). The user can view a help panel on this selection or cancel the selec-

tion altogether.

26

E. DISPLAY MENU

1. Description

The Display menu offers the user the opportunity to view digital imagery -

prior to and after steganographic encoding and extraction. It also provides limited statisti-

cal analysis of the change between an unencoded original image and it's encoded equiva-

lent.

2. Submenu Selections

a. Display Image

The Display Image selection permits viewing of a digital image

before and after steganographic encoding, using the XV Version 3.00 graphic file viewer.

Since this is spawned as an independent process, the user can therefore display as many

separate images as desired, depending only on the display capacity of the user's computer

system. All of the graphic editing features of XV are also available to the user. A file

browser panel is displayed and the user selects a file to view.

b. Generate Difference Image

The Generate Difference Image selection allows the user to perform

a bytewise comparison of the graphic body of an unencoded digital image and it's encoded

representation. The User selects the two files to compare using file browser boxes and acti-

vates the process by pressing the OK button. It then creates a Microsoft Windows Bitmap

format image that shows the absolute change of each red green and blue byte, with darker

pixels representing greater change in the pixel. The software which performs the compari-

son algorithm is adapted from Currie and Campbell (1996). The user can view a help panel

on this selection or cancel the selection altogether.

27

c. Display Histogram

The Display Histogram selection shows a histogram of the per pixel

absolute difference of two images that had the selection Generate Difference Image per-

formed on them. The file names of each are listed, and the total number of pixels changed.

Each histogram bin represents three bits of absolute change, i.e., one to three bits per

pixel, four to six bits, and so on up to complete change (24 bits).The user can view a help

panel on this selection while the panel is displayed.

F. HELP MENU

The Help menu provides a scrollable textbox of each menu selection in Steganog-

raphy Toolbox. These are the same information panels that can be reached from menu

selection panels when the "Help" button is pressed.

28

IV. IMPLEMENTING STEGANOGRAPHY TOOLBOX

A. THE DEVELOPMENT PACKAGE: SIMPLE USER INTER-
FACE TOOL (SUIT)

1. General Description

The Steganography Toolbox user interface was created using the Simple

User Interface Tool (SUIT). Information regarding SUIT in this chapter is summarized

from Conway et.al. (1992). SUIT was authored by Young (1990). It is a library of subrou-

tines, written in the ANSI C, that create graphic user interfaces (GUI's). It acts as a win-

dow manager for screen objects, and permits interactive property modification of widgets.

(A widget is a user interface component composed of data structures and callbacks.

Examples are button widgets that activate callback functions, and scroller lists that select

and pass text strings to other objects.) The widget property modifications are then saved in

a corresponding SUIT properties file, called a ".sui file", unless those widget properties

are "hard coded" into the main program. On subsequent execution of the main program,

the ".sui" file provides the object property definitions that SUIT will apply to the object.(If

it should become necessary to modify the ".sui" file for a given executable program, it will

be the one with the same file name as the executable, plus the suffix "sui".) In it's SPARC

platform implementation, SUIT is available via file transfer protocol (FTP) from the Uni-

versity of Virginia Computer Science Department as a 2.1 Mb gzipped tar file. Installation

is brief and requires little user interaction. Packaged with the installation program are a

tutorial, demonstration program source code samples that show widget function, and a

makefile for the source code. The user should be familiar with C programming, and have

available a C compiler and text editor.

29

2. Components of the Typical SUIT Graphic User Interface Implementa-

tion

Every program that uses SUIT to generate a GUI contains four elements:

The first three are widgets, callbacks, and an external control loop; these are written in the

main program source code. The fourth element is the corresponding ".sui" file, initially

generated by SUIT when it compiles the main program, which maintains a list of the asso-

ciated program's widget properties. Figures 4-1 and 4-2 (over the next several pages)

show examples of each. Properties such as size location, and color, that the user desires to

keep "hard coded", that is, permanently applied at program invocation, may be written

directly into the body of the main program.

#include "suit.h"

void GetAFileO {
char * fname;

fname = SUIT_askForFileName("/usr/bin/","Print","File name:");

if (fname != NULL)
printf ("user asked for file %s\n", fname);

else
printf ("user pressed CANCELXn");
}

void main (int arge, char *argv[])
{

SUIT_init(argv[0]);

SUIT_createButton("get a File Name", GetAFile);

SUIT_createDoneButton(NULL);
SUTT_beginStandardAppIication();

Figure 4-1. Sample main program source code

30

/* SUIT version 2.3 */

#define THE_SCREEN_WIDTH 960
#define THE_SCREEN_HEIGHT 600
#define THE_SCREEN_DEPTH 7

#include "suith"

/* */

/*

NOTE: */
/
*

*/
/* This file contains all the permanent properties of this application's */
/* objects and is read in as a data file. Compiling this file as part of */
/* your application "hard codes" your interface. Please see "shipping" */
/* in the SUIT reference manual for further information. *//
*

*/
/
*

*/
/* !! DANGER
!! */
/
*

*/
/* This file is machine-generated, and its contents are very
important. */
/
*

*/
/* If you must edit this file, do so with extreme
caution! */
/
*

*/
/* !! DANGER
!! */
/
*

*/
/*

Figure 4-2. Sample SUIT properties file

31

extern void SUTT_interiorInitFromCode (char *programName, SUIT_functionPointer
suiRoutine,

int width, int height, int depth);

extern SUJTjype *si_getType(char *typeName);

extern void si_addChildToObject(SUIT_object, SUIT_object, boolean);

static void MAKE (char *name, char *class, char *parent, boolean interactive)
{

SUIT_object o = SUIT_name(name);
SUIT_object p = SUIT_name(parent);
if(p!=NULL){

if(o==NULL)
o = SUIT_createObjectByClass(name, class);

if (interactive) {
SUTT_setBoolean (o, INTERACnVELY_CREATED, TRUE);
SUrr_makePropertyTemporary (o, INTERACTiVELY_CREATED, OBJECT);

}
si_addChUdToObject(SUrr_name(parent), o, FALSE);

static void SET (char *objOrClass, char *propertyName, char *properryType,
boolean atClass,

boolean locked, char *stringValue)
{

SUIT_type*type;
booleanerrorStatus;
Pointerretval;
SUITJevel level = OBJECT;
SUJT_object o;

if (atClass)
level = CLASS;

if (level = CLASS)
o = SUIT_dummyObjecÜnClass(objOrClass);

else
o = SUrT_name(objOrClass);

type = si_getType(propertyType);
retval = type->convertFromAscii(string Value, &errorStatus);
if (errorStatus == FALSE)

SUIT_setProperty(o, propertyName, propertyType, retval, level);

if (locked)
SUrr_lockPToperty(o, propertyName, level);

}

Figure 4-2 (continued). Sample of a Properties File

32

static void INIT_suiRoutine(void)
{
/* This line is for parsing simplicity ~ do NOT remove it! @ */
MAKE("Done","button","ROOT",0);
MAKE("get a File Name","button","ROOT",0);
SET("arrow button","border raised","boolean",l,0,"no");
SET("arrow button","changed class","boolean",l,0,"no");
SET("arrow button'V'darken background","boolean",l,0,"yes");
SET("arrow button","direction","SUIT_enum",l,0,'\"up\" of {V'upV V'downV
\"left\"\"right\"}");
SET("arrow button","draw nlled","boolean",l,0,"no");
SET("arrow button","has background","boolean",l,0,"no");
SET("arrow button'7'intermediate feedback","boolean",l,0,"no");
SET("arrow button","shadow thickness","int",l,0,"3");
SET("borderless file box","changed class","boolean",l,0,"no");
SET("borderless file box'V'file filter","text",l,0,"");
SET("borderless filebox","has border","boolean",l,0,"no");
SET("bounded value","arrowhead angle","int",l,0,"10");
SET("boundedvalue","arrowheadlength","double",l,0,"0.200000");
SETC'bounded value","button background color","GP_color",l,0,"black, black");
SETC'bounded value","button foreground color","GP_color",l,0,"grey, white");
SETC'bounded value","changed class","boolean",l,0,"no");
SETC'bounded value","current value","double",l,0,"0.000000");
SETC'bounded value","granularity","double",l,0 "0.000000");
SETC'bounded value","has arrow","boolean",l,0,"yes");
SETC'bounded value","has tick marks","boolean",l,0,"yes");
SETC'bounded value'V'increase clockwise","boolean",l,0,"yes");
SETC'bounded value","minimum value","double",l,0,"0.000000");
SETC'bounded value'V'needle color","GP_color",l,0,"black, black");
SETC'bounded value'V'start angle","double",l,0,"0.000000");
SET("button","changedclass","boolean",l,0,"no");
SET("button","disabled color","GP_color",l ,0,"white, white");
SET("button","interactivelycreated","boolean",l,0,"no");
SET("button","justification","SUIT_enum",l,0,'\"centeA"of{\"left\"
\"centeA"\"righr\"}");
SET("button","shrink to fit","boolean",l,0,"yes");
SETC'dialog box","border type","SUIT_enum",l,0,'\"fancy motifx" of {V'simpleV
\"motif\"\"fancy motifx"}");
SETC'dialog box","border width","int",l,0,"8");
SETC'dialog box","cache using canvas","boolean",l,0,"yes");
SETC'dialog box","changed class","boolean",l,0,"no");
SET("elevator","borderraised","boolean",l,0,"no");
SET("elevator","changedclass","boolean",l,0,"no");
SET("elevator","hasbackground","boolean",l,0,"no");
SET("label","changed class","boolean",l ,0,"no");
SET("label","hasborder","boolean",l,0,"no");
SET("label","justification","SUiT_enum",l ,0,'\"center\" of {V'leftV
\"centeA"\"righf\"}");
SET("laber,"shrink to fit","boolean",l,0,"yes");

Figure 4-2 (continued). Sample of a Properties File.

33

SET("list","borderraised","boolean",l,0,"no");
SET("list","changedclass","boolean",l,0,"no");
SET("Ust","textspacing","double",l,0,"1.200000");
SET("place mat","border raised","boolean",l,0,"no");
SET("place mat","changed class","boolean",l,0,"no");
SETC'scroUable Ust","border raised","boolean",l,0,"no");
SETC'scroUable Ust'V'changed class","boolean",l,0,"no");
SETC'scroUable list'V'has background","boolean",l,0,"no");
SETC'scroUable Ust","has border","boolean",l,0,"no");
SETC'type in box","any keystroke triggers","boolean",l,0,"no");
SET("type in box","backward char key","text'\l,0,"C-b");
SETC'type in box","beginning of line key","text",l,0,"C-a");
SETC'type in box","beginning of text key","text",l,0,"M-<");
SET("type in box","border raised","boolean",l,0,"no");
SETC'type in box","calculate lines","boolean",l,0,"no");
SETC'type in box","changed class","boolean",l,0,"no");
SETC'type in box","cursor color","GP_color",l,0,"black, black");
SETC'type in box","cursor index","int",l,0,"0");
SETC'type in box'V'cursor style","SUIT_enum",l,0,'\"vertical bar\" of {\"i-
beamV V'vertical bar\"}");
SETC'type in box'V'delete char key","text",l,0,"C-d");
SETC'type in box","delete entire hne key","text",l,0,"C-u");
SETC'type in box'V'done editing key","text",l,0,"C-x");
SETC'type in box'V'double cUck time","double",l,0,"400000.000000");
SETC'type in box'V'end of line key","text",l,0,"C-e");
SETC'type in box'V'end of textkey","text'\l,0,"M->");
SETC'type in box","forward char key","text",l,0,"C-f');
SETC'type in box'V'has a tab","boolean",l,0,"no");
SETC'type in box","highlight block","boolean",l,0,"no");
SETC'type in box","input sequence'\"text",l,0,"");
SETC'type in box","kül line key","text",l,0,"C-k");
SETC'type in box","last click time","double",l,0,"0.000000");
SETC'type in box","last mark index","int",l,0,"0");
SETC'type in box","mark end index","int",l,0,"0");
SETC'type in box","mark index","int",l,0,"0");
SETC'type in box'7'newüne key","text",l,0,"C-m");
SETC'type in box'V'next Une key","text",l,0,"C-n");
SETC'type in box","open Une key","text",l,0,"C-o");
SETC'type in box","previous line key","text",l,0,"C-p");
SETC'type in box","repaintkey","text",l,0,"C-l");
SETC'type in box","scroU down key","text",l,0,"M-v");
SETC'type in box","scroU up key","text",l,0,"C-v");
SETC'type in box","set markkey'\"text",l,0,"C-'1");
SETC'type in box","shrink to fit","boolean",l,0,"yes");
SETC'type in box","spacing gap","int",l,0,"3");
SETC'type in box","start x","int",l,0,"0");
SETC'type in box","start y","double",l,0,"0.000000");
SETC'type in box'V'tab key","text",l,0,"C-i");
SETC'type in box","tab length","int",l,0,"5");
SETC'type in box","wipe block key","text",l,0,"C-w");
SETC'type in box","yank key","text",l,0,"C-y");

Figure 4-2 (continued). Sample of a Properties File.

34

SET("ROOT","animated","boolean",0,0,"no");
SET("ROOT","background color","GP_color",0,0,"grey, white");
SET("ROOT","border color","GP_color",0,0,"grey, black");
SET("ROOT","borderraised",'T5Oolean",0,0,"yes");
SET("ROOT","border type"/'STJIT_enum",0,0,'\"rnotif\" of {VsimpleV V'motifx"
\"fancymotif\"}");
SET("ROOT","borderwidth","int",0,0,"2");
SET("ROOT',"changedclass","boolean",0,0,"no");
SET("ROOT","clip to viewport",'Tx)olean",0,0,"yes");
SET("ROOT","default object height","int",0,0,"80");
SET("ROOT","default object width","int",0,0,"80");
SET("ROOT","draw border on inside","boolean",0,0,"no");
SET("ROOT","font","GP_font",0,0,"times„12.000000");
SET("ROOT","foreground color","GP_color",0,0,'T5lack, black");
SET("ROOT","hasbackground",'T5Oolean",0,0,"yes");
SET("ROOT","hasborder","boolean",0,0,"yes");
SET("ROOT","margin","int",0,0,"5");
SET("ROOT","show temporary properties","boolean",0,0,"no");
SET("ROOT","shrink to fit","boolean",0,0,"no");
SET("ROOT","springiness","SUIT_springiness",0,0,"63");
SET("ROOT","SUIT system font","GP_font",0,0,"helvetica„14.000000");
SET("ROOT","viewport","viewport",0,l,"0 0 959 599");
SET("ROOT","visible","boolean",0,0,"yes");
SET("ROOT","window","window",0,l,"0.000000 0.000000 1.000000 1.000000");
SET("Done","active display","SUIT_enum",0,0,'\"standard\" of {V'button with
hotkey\" \"standard\"}");
SET("Done","borderraised",'T>oolean",0,0,"yes");
SET("Done";'callbackfunction";'SUIT_functionPointer",0,0,"functionptr");
SET("Done","disabled","boolean",0,0,"no");
SET("Done";'done(Mbackfunction",''SUIT_functionPointer",0,0,"function
ptr");
SET("Done","hasbackground",'Tx)olean",0,0,"yes");
SET("Done",'label","text",0,0,"Done");
SET("Done","viewport","viewport",0,0,"91 406 128 430");
SET("get a FUe Name'V'active display","SUrT_enum",0,0,'Vstandard\" of
{\"button with hotkey\"\"standard\"}");
SET("get a Füe Name","border raised","boolean",0,0,"yes");
SET("get a FUe Name","callback function","STJIT_functionPointer",0,0,"function
Pfr");
SET("get a FUe Name","disabled","boolean",0,0,"no");
SET("get a FUe Name","has background","boolean",0,0,"yes");
SET("get a FUe Name","label","text",0,0,"get a File Name");
SET("get a FUe Name","viewport","viewport",0,0,"220 372 311 396");

} /* end of INIT_suiRoutine */

void SUIT_initFromCode (char *programName)
{

SUITJnteriorlnitFromCode (programName, INIT_suUloutine, THE_SCREEN_WIDTH,
THE_SCREEN_HEIGHT, THE_SCREEN_DEPTH);

}

Figure 4-2 (continued). Sample of a Properties File.

35

The SUIT library contains several predefined widgets and the more com-

monly used are presented:

• buttons - widgets that call functions when "pressed." Radio buttons toggle but-
tons, and pulldown menus are variants.

• bounded values - widgets that permit a double or integer type value to be passed
to a function. Scrollbars, radial meters, pie slices and thermometers are the pre-
defined representations of bounded values.

• bulletin boards - serve as a visual mounting surface on which to place other wid-
gets.

• labels - widgets that permit text to be placed on other widgets.

• text boxes - widgets that permit a text string to be passed to a callback function.
Multiple line text boxes with attached scroller widgets are also predefined.

• file browser boxes - permit a file, root path to a file, or both to be passes to a call-
back function. This is defined as a collection of widgets; namely, a textbox for the
filename, a scrollable read-only list of files in the current directory, and "OK" and
"Cancel" buttons.This widget also permits file filtering as a widget property, and
directory traversal.

3. SUIT Properties and Inheritance

Each SUIT widget may have associated with it many properties. These are

features which control the widget's appearance and function. As described previously,

these properties may be written into the main program source code, or interactively manip-

ulated by invoking SUIT'S "property editor'Vhile the program is running. When some

newly compiled source code is executed, the user shall note that, unless the appearance

was "locked in" at compilation time, the buttons, labels scrollboxes, and the like shall be

randomly scattered about the window. This is because SUIT applies default values to the

properties until the user modifies them. Upon exiting the program SUIT will store these

modified properties in the ".sui" file, so that on subsequent invocation of the program,

these properties may be applied to the appropriate widgets. The property editor is a dialog

box which contains three scrollable lists, and an "OK" and "Cancel" button al child wid-

gets. The scrollable lists display the object, class and global properties applied to the pro-

gram. Figure 4-3 shows an example of a property editor

36

Each line of a text box represents a property. SUIT permits interactive

manipulation of properties with mouse and keyboard strokes. For example of the boolean

property HAS_BORDER can be interactively toggled between the values TRUE and

FALSE. Enumerated properties like FOREGROUND_COLOR are presented as radio but-

tons. The user may change variable properties like MAXIMUMJVALUE by typing a

value inside a text box. SUIT also provides error handling for invalid values.

(1) Object Properties: density value

ACTIVE_DISPLAY: "standard" of {"standard"}

ALTERED: no

CALLBACK_FUNCTION: function ptr

CURRENT_VALUE:

CURSOR X: 5

(2) Class Properties: type in box

| ANY_KEYSTROKE_TRIGGERS: no

I BACKWARD_CHAR_KEY: C-b

| BEGINNING_OF_LINE_KEY: C-a

| BEGINNING_OF_TEXT_KEY: M-<

I BORDER_RAISED: no

(3) Global Properties

ANIMATED: no j

BACKGROUND_COLOR: grey j

BORDER_COLOR: grey j

BORDER_RAISED:yes |.-

BORDERJTYPE: "motif" of {"simple" "motif "fancy m j

BORDER_WIDTH: 2 j

CHANGED_CLASS: no j

CLIP_TO_VIEWPORT:yes j

DEFAULT_OBJECT_HEIGHT:80 j

DEFAULT OBJECT WIDTH: 80 j,

\ EXPORT
\ OK

Figure 4-3. Example of a property editor

SUIT manages properties in the following way: every object has a set of

properties associated with it. SUIT first examines the object level property definitions. If it

cannot bind all the associated properties with definitions, it looks at the class level proper-

ties for a binding. For example a widget named "radio_l" could be an object of class

"radio_button". If a binding is not found, SUIT applies a global property definition to the

object. If the user changes the global property FOREGROUND_COLOR to black, and no

object or class level bindings exist for any object, then all objects will be assigned the

FOREGROUND_COLOR value black. Any property may also be "locked" with the com-

mand SUITlockPropertyO, which can be changed only via program control, not through

37

the property editor. Widgets may be defined as children of other widgets and thus inherit

the parent widget properties. The SUIT property editor is invoked by placing the mouse

cursor over the widget of interest and pressing SHIFT, CONTROL, and the letter "E"

simultaneously. Properties are applied when the user presses "OK" in the property editor

dialog box, or may press "Cancel" to close the editor window without modification.

4. Installing SUIT

SUIT is a platform-specific utility, with separate packages configured for

Sun3, Sun 4 (Sparestation), SGI IRIS, DEC, HP, IBM PC, and Macintosh. It is offered as a

2.1 Mb compressed (gzipped) tar file, so after downloading the compressed file the

installer must place it in the desired directory, "gunzip" the file and then "tar xvf' the

archive file. A README file is provided in the installation directory which guides the user

through the rest of the installation. Usually the only modification required prior to execut-

ing the installation makefile is to list in the makefile the desired SUIT library path and the

window environment library path. One of the subdirectories created contains a collection

of Postscript files that make up a user's manual and tutorial. Source code for a demonstra-

tion of many different widgets, along with source code for implementing individual wid-

gets and makefile are placed in another directory.

B. HOW STEGANOGRAPHY TOOLBOX WAS BUILT

1. Purpose

This section is included to assist the student interested in subsequent devel-

opment of a steganography research tool using SUIT as the graphic user interface develop-

ment utility. The coding structure of the interface and the manner through which processes

are invoked by the interface are also presented.

38

2. Motivating Considerations

Shneiderman (1992) describes the interface form of Steganography Tool-

box as "menu selection" and "form fill-in". Processes described by the functional specifi-

cations are invoked using dialog boxes. These dialog boxes are displayed via mouse

selection through the main menu and linked drop-down menus. The overall menu structure

is that of an acyclic graph; if the menu structure is considered independent of the help

browser, however, the menu structure can be considered a tree of depth 3, where the leaf

selections are help panels. The menu structure emphasized breadth over depth, as recom-

mended by Kiger (1984) and Landauer and Nachbar(1985), and the organization of wid-

gets within all the dialog boxes is similar as encouraged by Norman and Chin (1988), as

discussed by Schneiderman (1992). It should be noted that SUIT appeared to impose some

compiler -related limitations, which strongly influenced final development. SUIT was

written in C, but the lengthy programs called by the interface were written in C++. A

makefile to compile and link the GUI code and steganography programs was attempted

using SUN (spare) C++ version 2.1 and GNU C++ (also called g++), but the compiler

error messages produced suggested the compilers rejected the way the SUIT button wid-

gets were defined. Since a GUI is of limited utility without buttons, the makefile was

changed to compile the GUI code in a C compiler (GCC), compile the steganography pro-

grams in a C++ compiler and then link the separately compiled object files. This didn't

work either, because the GUI code had to tell the preprocessor to "#include" a header file

for the steganography code (which itself had to "#include" C++ header files), again pro-

ducing error messages. It was finally decided that, short of rewriting the steganography

program source code or finding another GUI development utility for C++, that system()

calls would be included in the GUI program, and that the front end of the steganography

source code would be rewritten to have all parameters passed upon invocation, instead of

interactively passed through standard input. While this may not be a preferred method to

develop a software suite, it does provide one advantage. A student can design a steganog-

raphy program to be called with all input parameters as single a command fine entryof the

form program name argumentl argument2... , and run it as an independent program at

the command prompt, without worrying about how to write it into the rest of the GUI. The

39

Student can then just create a system() call "hook" to invoke the program from the user

interface, adding functionality to the GUI in a relatively simple manner. It was the author's

intent to have the image viewer (XV version 3.00) and file format converter (ImageMagick

version 3.7) be invoked as system calls anyway, since both are full-featured utilities.

3. Coding the User Interface

a. Creating the External Control Loop

The heart of operation of the GUI is what Conway, et. al. (1992) call

an "external control loop". It is essentially a continuous loop, which repeatedly checks for

mouse or keyboard events, and responds accordingly. The segment of code which per-

forms this in Steganography Toolbox is shown in Figure 4-4, lines 4 and 35.

SUIT_init(argv[]) passes the executable name to the SUIT initialization program, which

uses it to find the corresponding ".sui" file. SUIT_beginStandardApplication(), is listed

after all objects are created and represents the external control loop.

l.void main (int arge, char *argvQ)
2.{
3. SUTT_object menuBar, fileMenu, encodeMenu,extractMenu, displayMenu,helpMenu;
4. SUrT_init(argv []]);
5.
6. fileMenu = SUTT_createPullDownMenu ("File");
7. SUrr_addToMenu(fileMenu, "Convert Format", Convert);
8. SUIT_addToMenu(fileMenu, "Delete File", Delete);
9. SUTT_addToMenu(fileMenu, "Exit", Quit);
10.
11. encodeMenu = SUrr_createPullDownMenu ("Encode");
12. SUTT_addToMenu(encodeMenu, "Simple Replace (.BMP)", BMPJSimple);
13. SUlT_addToMenu(encodeMenu, "RGB Vector (.BMP)", BMP_RGB);
14.
15. extractMenu = SUIT_createPullDownMenu ("Extract");
16. SUIT_addToMenu(extractMenu, "Simple Replace Extract (.BMP)"3MP_Simple_X);
17. SUrr_addToMenu(extractMenu, "RGB Vector Extract (.BMP)", BMP_RGB_X);
18.
19. displayMenu = SUrT_createPullDownMenu ("Display");
20. SUIT_addToMenu(displayMenu, "Display Image", Displ);
21. SUTT_addToMenu(displayMenu, "Generate Diff Image", Gen_Diff);
22. SUrr_addToMenu(displayMenu, "View Histogram", genHist);

Figure 4-4. Main Program Code Segment

40

23.
24. helpMenu = SUIT_createPullDownMenu ("Help Menu");
25. SUIT_addToMenu(helpMenu, "Browse Help", GetHelpBox);
26. SUIT_addToMenu(helpMenu, "About Help", AboutHelpBox);
27.
28. menuBar = SUIT_createMenuBar("Steganography toolbox");
29. SUIT_addChildToObject(menuBar, fileMenu);
30. SUIT_addChildToObject(menuBar, encodeMenu);
31. SUIT_addChildToObject(menuBar, extractMenu);
32. SUIT_addChildToObject(menuBar, displayMenu);
33. SUIT_addChildToObject(menuBar, helpMenu);
34. SUIT_createLabel("Steganography Toolkit");
35. SUIT_beginStandardApplication();
36.}

Figure 4-4 (continued). Main Program Code Segment

b. Creating the Main Menu

Figure 4-4 also shows how the main menu was created. Each menu

object was first created with SUIT_createPulldownMenu() as shown on lines 6,11,15,19,

24, and 28.

c. Creating Submenus

Referring to Figure 4-4 once again, note that once each main menu

object was created, the submenus were mapped to menu objects with the call

SUIT_addToMenu(), The first parameter in SUIT_addToMenu() refers to the parent object;

the second indicates the submenu object name; the third indicates the callback to invoke

when the button is pressed.

d. Callback Functions

All but two of the callback functions, namely, gen_Hist() and

Quit(), follow a nearly identical implementation form, the only difference being the

number and type of widgets contained therein. Figure 4-5 is provided as an example

which shows how a system() call is made to the simple replacement bitmap encoding

program bs_simple(). The reader should keep in mind the desired output is a system

call of the form: "bs_simple(char* inputfile, char* datafile, int density, char* output-

41

file)". First, all widget objects, including a dialog box object are declared. The dialog

box is a predefined SUIT object which can contain a widget, an "OK" button, and a

"Cancel" button.The switch statement examines the value of "button pressed", which

is either the value REPLY_CANCEL or REPLY_OK. Following execution of the

switch structure, the dialog box is cleared from the screen with the statement

SUIT_destroyObject(). Returning to Figure 4-5, once objects are declared, they are

bound to widgets.

1. void BMP_Simple(SUIT_object menu){
2.
3. SUTT_object bs_container, bs_fbox 1 ,bs_fbox2,bs_fbox3 ,density,
4. bs_h_button,bs_dBox;
5. char* filel;
6. char* file2;
7. char* file3;
8. char bs[256];
9. int den_val;
10. char* den_char;
11.
12. bs_container = SUTT_createBulletinBoard ("BS Container");
13. bs_fboxl = SUTT_createFileBrowser(
14. "barney","","BS Filel'V'Select Input Image",NULL);
15. bs_fbox2 = SUTT_createFileBrowser(
16. "wilma","","BS File2","Select Input Data",NULL);
17. bs_fbox3 = SUTT_createFileBrowser(
18. "dino","","BS File3","Select Output Image",NULL);
19. density = SUTT_createTypeInBox("density value", NULL);
20. bsJUmtton = SUIT_createButton("bs_help",HelpBMP_Simple);
21.
22.
23. SUrr_changeObjectSize(bs_container, 600,340);
24.
25. SUIT_addChildToObject(bs_container, bs_fboxl);
26. SUIT_addChildToObject(bs_container, bs_fbox2);
27. SUIT_addChildToObject(bs_container, bs_fbox3);
28. SUIT_addChildToObject(bs_container, density);
29. SUTT_addChildToObject(bs_container, bs_h_button);
30.
31. SUIT_setViewport(bs_fboxl, VIEWPORT,
32. SUIT_mapToParent(bs_rboxl, 0.05,0.05,0.3,0.95));
33. SUIT_setViewport(bs_fbox2, VIEWPORT,
34. SUTT_mapToParent(bs_fbox2,0.325,0.05,0.575,0.95));
35. SUIT_setViewport(bs_fbox3, VIEWPORT,
36. SUrr_mapToParent(bs_fbox3,0.6,0.05,0.85,0.95));
37. SUIT_setViewport(density, VIEWPORT,
38. SUrT_mapToParent(density, 0.9,0.775,0.95,0.825));

Figure 4-5. Example of How to Implement a Dialog Box

42

39. SUIT_setViewport(bs_h_button, VIEWPORT,
40. SUrr_mapToParent(bs_h_button, 0.88,0.43,0.97,0.50));
41.
42. bs_dBox = SUrr_createOKCancelDialogBox("fred", bs_container, NULL);
43. SUIT_activateDialogBox(bs_dBox);
44. switch (SUrr_getInteger(bs_dBox, "button pressed")) {
45. caseREPLY_CANCEL:
46. printf("User selected CANCELNn");
47. break;
48. caseREPLYJDK:
49. filel = SUIT_getText(bs_fboxl, CURRENT_VALUE);
50. file2 = SUIT_getText(bs_fbox2, CURRENT_VALUE);
51. file3 = SUIT_getText(bs_fbox3,CURRENT_VALUE);
52. den_val =atoi(SUIT_getText(density, CURRENT_VALUE));
53. printf("found filel: %s\n", filel);
54. printf("foundfile2: %s\n",file2);
55. printf("foundfile3: %sW',file3);
56. printf("found density: %d %s\n ",den_val," ");
57. strcpy (bs, "bs_encode ");
58. strcat (bs, filel);
59. strcat (bs,"");
60. strcat (bs, file2);
61. strcat (bs," ");
62. strcat (bs,(SUIT_getText(density, CURRENT_VALUE)));
63. strcat (bs," ");
64. strcat (bs, file3);
65. strcat (bs,"&");
66. system (bs);
67. printf ("done %s\n", bs);
68. break;
69. }

SUIT_destroyObject(bs_dBox);
}

Figure 4-5 (continued). Example of How to Implement
a Dialog Box and Invoke a System Call

In this example, there was a bulletin board widget, three file browser wid-

gets, a type-in box widget, and a button widget. The bulletin board widget is sized with the

command SUIT_changeObjectSize(), and the other widgets are mapped to it as child

objects. The bulletin board widget becomes the object to pass to the dialog box, and all the

values generated by the child widgets are passed to the dialog box through the bulletin

board object. Once the child widgets are oriented on the bulletin board ("hard-coded" as

described previously) with the calls SUIT_setViewPort() and SUIT_mapToParent(), the

dialog box widget and bulletin board are bound to the dialog box object name by the call

SUIT_createOKCancelDialogBox(), and the box is displayed with

43

SUIT_activateDialogBox(). If the value of "button pressed" is equal to REPLY_OK, then

the system command is invoked in the following way: a text string containing the name of

the steganography executable program name is created and bound to a character array, the

values of the necessary arguments are concatenated to the string. If it is to run as an inde-

pendent process, an ampersand (&) is concatenated. Finally systemf) is called with the

character array variable as the input parameter. The following submenu selections use the

dialog box structure, where name_l /name_2/name_3... specifies the "path" of selections

one must make to arrive at the ultimately desired selection, (the function of each submenu

selection is described in Chapter III, FEATURES OF STEGANOGRAPHY TOOLBOX):

• File/Convert Format

• File/Delete File

• Encode/Simple Replace (.BMP)

• Encode/RGB Vector (.BMP)

• Extract/Simple Replace Extract (.BMP)

• Extract/RGB Vector Extract (.BMP)

• Display/Display Image

• Display/Generate Diff Image

•Display/View Histogram

•Help Menu/Browse Help

e. Displaying Histogram Data

As indicated in the previous subsection, all the steganography pro-

grams are executed using dialog boxes to gather the needed parameters and make the sys-

tem call, with gen_Hist() indicated as one of the exceptions. The call gen_Hist() presents

the viewer a histogram of values based on the last submenu selection of Generate Diff

Image. During execution of the steganography executable program compare() (system-

called by the selection Generate Diff Image), a file called "histdat" is opened and the char-

acter string values of the two input files are written. This is followed by the long integer

values of the number of pixels that changed in value from one image to the next by one to

44

three bits, then the number of pixels that changed by four to six bits, and so on, up to 22 -

24 bits change per pixel. Finally the long integer total number of changed pixels is written

to "hist.dat" and it is closed. The callback function gen_Hist() looks at this file for data.

Histogram scale heights are quantized from zero to 100, and the values passed to thermom-

eter scroller objects' property CURRENT_VALUE using the call SUIT_setDouble() and

SUIT_createBoundedValue. These widgets are mapped to the bulletin board with

SUIT_addChildToObject() and positioned with SUIT_setViewport() and

SUIT_mapToParent(). This is inserted into a dialog box that is activated with

SUIT_activateDialogBox().

f. Creating Help Widgets

The method used for creating a help widget is identical to that of

any other dialog box widget with the difference being that the widget wrapped by the dia-

log box is a bulletin board with a text string mapped to it. It is displayed when either the

"Help" button is pressed in an associated steganography function dialog box, or when an

associated help topic selection is made via the Help Browser.If the help browser is used the

text string selected is passed by the scrollable list in GetHelpBox() to GetHelpTopic().

GetHelpTopic() compares the text string to a set of text strings and if it finds a match, dis-

play that Help dialog box.

g. Communication from the Invoked Program back to the GUI

Main programs are implicitly defined to return an integer value to

the operating system upon termination. By convention a program is written with a "return

0;" statement at the end, to indicate successful execution, while a returned "1" denotes an

error occured. When using a systemQ call, however, system() appends a byte of its own on

the value, to denote its own successful termination, regardless of what happened in the

called program. Therefore, if a system()-called program returns "0", a zero is returned, but

if the program returns a "1", system() will pass back "00000001 00000000", or "256".

Keeping this in mind, if the program writer wants to pass back a value to indicate some

45

program error by writing "exit(3)", then Steganography Toolbox will see the value "768".

To get a graphic advisory panel to display, define an integer variable and assign it the value

of the returned number, Then use this number as the argument to a switch statement, keep-

ing in mind that it must be multiplied by 256 (that is,28). In the appropriate case block use,

the SUrr_inform() callback to present an advisory callback,where the argument to

SUITjnform is the desired message, in quotes.

h. How Exit Works

The submenu selection File/Exit calls a function Quit(). In Quit(), there is

the standard suit call SUIT_done(), which closes any active windows, saves any interac-

tively created (and not "hard coded") widget property values to the ".sui" file, and termi-

nates the SUIT interface.

C. A SUGGESTED METHOD FOR IMPLEMENTING ADDITIONAL

FEATURES IN STEGANOGRAPHY TOOLBOX

Assuming a requirements review has already been made and the user decides to

add some feature to the current implementation, an ordered checklist is offered:

• Create separately executable code. The advantage of this is that it gives the stu-
dent a specific task to focus upon, and his or her efforts may be devoted to creat-
ing and testing the code, not worrying about how it is linked to the GUI.

• Modify the main menu and submenus. The student can attach them to toy call-
back functions that print a specific text string to standard output to test.

• Write a callback function, in the form of a dialog box, which makes a system()
call. This can also be tested with a toy callback function, that prints any values
that ultimately will be passed in the system() call.

• Insert exit(integer) statements in a conditional statement within the system-
called program to handle errors, and modify the integer-receiving switch state-
ment in Steganography Toolbox to display a SUITjnform panel.

• Add Help features.

46

V. REQUIREMENTS TESTING

A. TEST OVERVIEW

Requirements-based testing methodology was used on Steganography Toolbox.

The following description of requirements-based testing was taken from Shimeall (1996).

This chapter represents the Test design document. Test design documents are typically

composed of the following elements:

•a description of the object tested,

•a list of expectations of proper behavior,

•a description of the planned test procedure,

•a description of the actual test procedure,

•results generated by the test procedure,

• an evaluation of the test procedure.

Since chapters HI and IV provided a description of the test object, including

expectations of proper behavior, these particular portions are omitted. Though a typical

test design document additionally provides separate sections for a description of the actual

tests performed (vice those planned), this chapter shall merge any discussion of actual

testing that departed from the planned test battery with the evaluation of the test proce-

dure. In order to develop a test plan, seven tasks are performed:

1.Determine goals,

2. Classify the goals,

3.Aggregate the goals,

4.1dentify important cases,

5.Select data to exercise those cases,

ö.Determine the expected results,

7.Sequence the cases,

8.Sequence the aggregates.

47

B. TEST GOALS

This section lists functional goals of Steganography Toolbox, as interpreted from

Chapter HI, FEATURES OF STEGANOGRAPHY TOOLBOX, chapter IV (IMPLE-

MENTING STEGANOGRAPHY TOOLBOX) as well as the Steganography Toolbox

Functional Requirements of Appendix B. It must be stated that the scope of testing is,

wherever possible, limited to the interface file source code the author wrote, Since the user

interface uses the Simple User Interface Toolkit (SUIT) to create an executable GUI, the

widget libraries will not fall within the scope of testing, nor will any of the independently

executable programs called by Steganography Toolbox.Testing will instead include verifi-

cation that the proper data is passed as an argument to system(), that erroneous data

entered via widgets is properly handled, and that proper activations of callbacks within the

graphic user interface occur. The test goals now follow:

l.The graphic user interface (GUI) shall present a main menu on program activa-

tion.

2.The GUI main menu shall consist of the submenu choices, File, Encode, Extract,

Display, and Help.

3.The File submenu menu When Selected with a single left mouse button click

shall present the selections: Delete File, Convert Format, Exit.

4.The Encode submenu menu When Selected with a single left mouse button click

shall present the selections: Simple Replace, RGB Vector.

5.The Extract submenu menu When Selected with a single left mouse button click

shall present the selections: Simple Replace, RGB Vector.

6.The Display submenu menu When Selected with a single left mouse button click

shall present the selections: Display Image, Generate Diff Image, View Histo-

gram.

7.The Help submenu menu When Selected with a single left mouse button click

shall present the selections: Browse Help, About Help.

8.Delete File shall consist of a file browser widget mapped as a child to a dialog

box.

9.When the Delete file OK button is pressed, the value of the filename to be

48

deleted shall be appended to a string preceded by the string, "rm" (blank space
included).

10. When the Delete file OK button is pressed, a confirmation box will display ask-
ing, "Do you really want to do this?"

11.In Delete File, the character string shall be the argument in a systemf) call that
causes the file specified by fname to be deleted from the directory in which it
resides.

12.1n Delete File, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

13.The Convert File panel shall consist of two file browser widgets mapped as
children to a dialog box.

14.When the Convert File OK button is pressed, the value of the filename to be
converted from shall be appended to a string containing the word "convert",
and a blank space, which is followed by the filename which it will be con-
verted.

15.1n Convert File, the character string shall be the argument in a system() call that
causes the first file specified by fname 1 to be converted to the format specified
byfnamel.

16.1n Convert File, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

17.The Exit Menu Selection shall cause the main menu panel to disappear and the
program to terminate.

18.The Simple Replace panel shall consist of three file browser widgets, and a text
box, mapped as children to a dialog box.

19.When the Simple Replace OK button is pressed, the value of the input image
filename to be encoded into shall be appended to a string containing the word
"bs_encode", and a blank space, which is followed by the input data filename
to be encoded into the image, followed by a blank space, followed by the den-
sity, followed by a blank space, followed by the output filename.

20.1n Simple Replace, the character string shall be the argument in a system() call
that causes bs_encode() to be invoked.

21.In Simple Replace, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

22.The RGB Vector panel shall consist of three file browser widgets, mapped as
children to a dialog box.

23.When the RGB Vector OK button is pressed, the value of the input image file-
name to be encoded into shall be appended to a string containing the word
"br_encode", and a blank space, which is followed by the input data filename
to be encoded into the image, followed by a blank space, followed by the out-
put filename.

24.1n RGB Vector, the character string shall be the argument in a system() call that
causes br_encode() to be invoked.

25.1n RGB Vector, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

26.The Simple Replace panel shall consist of two file browser widgets, mapped as
children to a dialog box.

49

27.When the Simple Replace OK button is pressed, the value of the input image
filename from which data is to be extracted shall be appended to a string con-
taining the word "bs_extract", and a blank space, which is followed by the out-
put data filename.

28.1n Simple Replace, the character string shall be the argument in a systemQ call
that causes bs_extract() to be invoked.

29.1n Simple Replace, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

30.The RGB Vector Extract panel shall consist of two file browser widgets, and a
text box widget, mapped as children to a dialog box.

31.When the RGB Vector Extract OK button is pressed, the value of the input
image filename from which data is to be extracted shall be appended to a string
containing the word "br_extract", and a blank space, which is followed by the
output data filename, followed by a blank space, followed by a number that
represents the filesize of the original input data file. This is nontestable as to
whether it actually is the correct value, only whether it is a string of numbers
ranging between zero and nine).

32.1n RGB Vector Extract, the character string shall be the argument in a system()
call that causes br_extract() to be invoked.

33.1n RGB Vector Extract, pressing the Cancel button shall cause the dialog box to
be removed from the screen with no other action.

34.Display Image shall consist of a file browser widget mapped as a child to a dia-
log box.

35.When the Display Image OK button is pressed, the value of the filename to be
displayed shall be appended to a string preceded by the string, "xv" (followed
by a blank space), followed by an ampersand(&).

36.1n Display Image, the character string shall be the argument in a system() call
that causes the file specified by fname to be displayed on the screen.

37.In Display Image, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

38.(Derived) In Display Image, pressing OK with no filename selected shall cause
the "XV" panel to be displayed alone.

39.The Generate Diff Image panel shall consist of three file browser widgets,
mapped as children to a dialog box.

40.When the Generate Diff Image OK button is pressed, the value of the first input
image filename to be compared shall be appended to a string containing the
word "compare", and a blank space, which is followed by the second input
image filename to be compared, followed by a blank space, followed by the
output image filename.

41.In Generate Diff Image, the character string shall be the argument in a systemf)
call that causes compare() to be invoked.

42.1n Generate Diff Image, pressing the Cancel button shall cause the dialog box
to be removed from the screen with no other action.

43.The View Histogram submenu selection shall invoke callback genHist().
44.The View Histogram panel displayed by genHist() shall contain eight scroller

widgets mapped to display the eight long integer values contained in "histdat".

50

45.The View Histogram panel displayed by genHist() shall contain eight textbox
widgets mapped to display the eight long integer values contained in "histdat".

46.1n View Histogram, pressing the Cancel or OK button shall cause the dialog
box to be removed from the screen with no other action.

47.Browse Help shall consist of a scrollable list widget mapped as a child to a dia-
log box.

48.When the Browse Help OK button is pressed, the value of the help topic to be
displayed shall be passed to GetHelpTopic().

49.1n GetHelpTopic(), the topic string passed to it shall cause the respective Help
panel to be displayed.

50.1n Browse Help, pressing the Cancel button shall cause the dialog box to be
removed from the screen with no other action.

51.When About Help is Selected, an information dialog box shall display.
52. In Delete File, pressing OK with no filename selected shall be handled with an

error message.
53. In Delete File, pressing OK with a filename selected that cannot be opened

shall be handled with an error message.
54. In Convert File, pressing OK with insufficient parameters selected shall be

handled with an error message.
55. In Simple Encode, pressing OK with not all arguments entered shall be han-

dled with an error message.
56. In Simple Encode, pressing OK with an invalid density entered shall be

handled with an error message.
57.1n Simple Encode, attempting to open an input image file that cannot be opened

shall cause an error message to be displayed.
58.1n Simple Encode, attempting to open an input text file that cannot be opened

shall cause an error message to be displayed.
59.1n Simple Encode, attempting to open an output image file that cannot be

opened shall cause an error message to be displayed.
60.1n Simple Encode, an attempt to encode an image with a datafile of such a size

and at such a density that does not embed all of the datafile shall cause an error
message to be displayed.

61. In RGB Vector, pressing OK with not all arguments entered shall be handled
with an error message.

62.1n RGB Vector, attempting to open an input image file that cannot be opened
shall cause an error message to be displayed.

63.Li RGB Vector, attempting to open an input text file that cannot be opened shall
cause an error message to be displayed.

64.1n RGB Vector, attempting to open an output image file that cannot be opened
shall cause an error message to be displayed.

65.1n RGB Vector, an attempt to encode an image with a datafile of such a size and
at such a density that does not embed all of the datafile shall cause an error
message to be displayed.

66. In Simple Replace, pressing OK with not all arguments entered shall be han-
dled with an error message.

67.1n Simple Replace, attempting to open an input image file that cannot be

51

opened shall cause an error message to be displayed.
68.In Simple Replace, attempting to open an input text file that cannot be opened

shall cause an error message to be displayed.
69.1n Simple Replace, attempting to open an output image file that cannot be

opened shall cause an error message to be displayed.
70. In RGB Vector Extract, pressing OK with not all arguments entered shall be

handled with an error message.
71.In RGB Vector Extract, attempting to open an input image file that cannot be

opened shall cause an error message to be displayed.
72.1n RGB Vector Extract, attempting to open an input text file that cannot be

opened shall cause an error message to be displayed.
73.1n RGB Vector Extract, attempting to open an output image file that cannot be

opened shall cause an error message to be displayed.
74.1n Display Image, attempting to open an input image file that cannot be opened

shall cause an error message to be displayed.
75.1n Generate Difference Image, attempting to open an input image file that can-

not be opened shall cause an error message to be displayed.
76.1n Generate Difference Image, attempting to open an output image file that can-

not be opened shall cause an error message to be displayed.
77. In Generate Diff Image, pressing OK with not all arguments entered shall be

handled with an error message.
78.1n View Histogram, attempting to open "histdat" that cannot be opened shall

cause an error message to be displayed.
79.(Derived) In Browse Help, pressing OK with no topic selected shall be handled

with an error message.

TEST GOAL CLASSIFICATION

Shimeall(1996) states test goal classification is typically divided into the following

categories:

•Non-testable goals: vocabulary definitions, examples, user action descriptions,

and generalities.

•Inspection goals: language usage, device usage, screen layout, and documenta-

tion.

•Analysis goals: variable usage, expression usage, support software usage, and

commenting.

•Execution goals: calculation results, value transformations, value maintenance,

efficiency, and timeliness.

In light of these descriptions the following goal classifications were made.

52

1.Non-Testable Goals

31.

2.Inspection Goals

1,2,8,13,18,22,26,30,34,39,47.

3.Analysis Goals

9,14,19,23,27,35,40,44,48.

4.Execution Goals

3-7,10-12,15-17,20,21,24,25,28,29,32,33,36-38,41-43,46,49-79

D. TEST GOAL AGGREGATES

Many of the goals have similar purpose. The most significant of these is the aggre-

gation of goals that perform in the dialog box widget structure. A string is formed and sys-

tem() call made. Therefore a test of proper string formation is appropriate. In the case of

the Simple Encode selection, valid bit encode density values are an appropriate test aggre-

gate, since it is independent of every the other goal. File selection and opening is also a

necessary test aggregate, almost every menu selection needs to open image or text files.

1. String-formation

9,14,19,23,27,35,40,48.

2. Valid Bit Encode Density

56.

3. File Selection and opening.

52-55,57-59,61-64, 66-78.

4. System() invocation

11,15,20,24,28,32,36,41,43.

5. Proper image/Datafile Ratio

60,65

6. Widget Organization

2,8,13,18,22,26,30,34,39,44,45,47

7. Widget/Window Activation and Destruction

1,3,4,5,6,7,10,12,16,17,21,25,29,33,37,38,42,46,49,50,51,

53

E. TEST SET-UP

1. String-Formation

This test determines whether the proper string is created prior to getting

passed as an argument to the system() call. A printf() statement is inserted between the

final string strcat() call and the system() call. A script is run on the terminal window that

invokes Steganography Toolbox. The expected results are that proper strings will be writ-

ten to standard output and the scriptfile for each selection. The following terminal window

data appeared, as expected.

ac8> s-toolbox
rm/users/work4/woottend/thesis/sui^sparc/src/thesis/a.dat

../../../. ./ImageMagick/convert
/users/work4/woottend/thesis/suit/sparc/src/thesis/arc.gif
/users/work4/woottend/thesis/suit/sparc/src/thesis/arc2.bmp

bs_encode
/users/work4/woottend/thesis/suit/sparc/src/thesis/arc.bmp
/users/work4/woottend/thesis/suit/sparc/src/thesis/fl6.bmp
/users/work4/woottend/thesis/suit/sparc/src/thesis/atest.bmp

bs_extract
/users/work4/woottend/thesis/suit/sparc/src/thesis/atest.bmp
/users/work4/woottend/thesis/suit

rgb_steg
/users/work4/woottend/thesis/suit/sparc/src/thesis/arc.bmp
/users/work4/woottend/thesis/suit/sparc/src/thesisAowder
/users/work4/woottend/thesis/suit/sparc/src/thesis/atest.bmp

rgb_extract
/users/work4/woottend/thesis/suit/sparc/src/thesis/atest.bmp
/users/work4/woottend/thesis/suit/sparc/src/thesis/atestout.bmp
5560

xv
/users/work4/woottend/thesis/sui^sparcAsrc/thesis/arc.bmp&

compare
arc.bmp
atest.bmp
atestout.bmp

Figure 5-1. String Formation Test

54

2. Valid Bit Code Density Test

The next test determines whether an invalid bit encode density value will

elicit the appropriate error information box. This was tested by execution; the segment of

code relevant to this test (Figure 5-2) is from generic_steg.C:

while(argv[3][j]){

if(!(isdigit(argv[3][j])))

exit(7);

switch (argv[3][j]){

case Trcase^'xase'S'xase^'rcase'S'xase'ö'rcase'?':

break;

default:

exit(9);

break;

}

if(!(j==0))

exit(9);

j=j+i;

}

Figure 5-2. Code Segment From bs_encode()

The test values selected were, "6", "9", "2a", and "77". Since the values are part of

a string it was necessary to use the code segment of Figure 5-2 rather than merely casting

the value as an integer.The following screen displays resulted (Figures 5-3, 5-4, and 5-5):

55

SteeaaoBttabvToalkox

BSfHtfSl-.

Select Input Imafle

Jarcbnip
!$$&MW0&-.

&Ü.4P&....
är<2Jajpfi::'-
atest-ro.twnp i

Sfi

f pfrBft!i»d8.s;-86.Fifl&

BS File3

Select Oytpötiiftajje

Bit denstty exceeds range

&$&.

BMP_5imp.CG(

■Eneneting.

bsjT£<p|

föJ;

1;

5©*ffi

Cancel

Figure 5-3. Error Raised Using "9'

i-^sS«S«iiw«^^Eiikair<Ä-;:'

BS-Rlel •

fro.bmp

afcZbrop «5

A>sersAeorf<*V\uOOttsr:

;-BSFile2:: ■■

rt6.bfpp

Select Output tmag*

Encoding ;—I'

amgJSüU-?) Cancel T
- rsf '

(atestbmp
üüiti^^u^^yi^Uä

;#i»eiili#pS^^ ■"

W&^Wl

AjsersAvoA/VWooaer

; BMPJSImpx

■.. ftjsers/worfc«t^uootter;
■ J E>ir*qtorred,.9^ File

bs_help
11 ■ i i I

Figure 5-4. Error Raised Using "2ar

56

$el'e«rttipiattffläj6e

$&t0^$0£%?

'fk -' £2 Hi:':

are&bmp-
atesT-r&.brnp

y -
I.:

|lj?r. .__

/usftESAwork^WoOtter

SteBnotMakv Tooftoi

Staple Eacofe

8$£te2"

Select; tryjytpäta..
wältoMli'.'ijlnHliUiM'diMmi

Select öytpüit fmäae
■ ■' ■ ill nim»<.i.^Uii ..i

33KS

Bitderrsfty exceeds range.

m&

eajtfi.bflfip

tpiwc.twie$,S?FJie.-

W:

lDirei#Dnes,S'7£lte

Cancel

:^is£Si^

Figure 5-5. Error Raised Using 77.

3. File Selection, Opening, and Comparison

This test checks whether an error is raised when:

•An input file cannot be opened

♦An output file cannot be opened.

•Two files of are of different size, which causes the Generate Diff Image to abort.

The test plan for this is to attempt to read an input image file that does not exist in

the directory, try to open an output file previously that had its read-write-execute mode set

to read-only, and finally try to compare two images of different graphic data size using the

selection Generate Diff Image. The following screen displays (Figures 5-6,5-7, and 5-8)

resulted, as expected.

57

Select in i mage

I' J{Qovp 1 diret

arc.gif'".

/uaers/work-Vwaötter

Bft£lfe£:

■ ill Jl"l'«lt l.lll1)IHl

:S8Ösf?SÄS^}5?; '"Ä 'S:

•^■l»i; libt^M.'.lrtiiit'in lUi

: I Cairtd nötigen input Image file-afaarted.

jgfcffl

asssssrrts? *-q—"-»«WIM »I jj«Miii«JMi *■'.*".

lF>irfeGtqne§;8$Fte

fr-.frete].

•BianKÜiMaMa

Figure 5-6. Input file cannot be opened.

Steeaabflraafcv Tedbex

S&ttaract ;

y:f:

.,:.

Jatteämp-'-'v :"-:-' 'J:fetH'^-mvftW*h:':. •-•"•> :;:-:'.

■:g^i|^:^|p^^||^|ii^r^W^Söf'.:;

aflfcflif •.
>6W5JpsK:::^!

^^^^rfö^-'B^S W®&&-%£
;•■•■;•;• :*

"'r-'\&&Ä;v:. Ä.,• i-ivriV .■'.-: {;'••,'•',{•'•'■■• "'-•-"•:" '••'■•'•'■:'*-

Äj&ersÄwj.rk4ftwoottBnc

"— ilfeMJAaii.mwn—,l|1."'

.•:■:.•-•-. :'•••■.■.•.■•.■■•.•••• ■.-.i*".::.-::•:.;—•.:•.••'.:•.• •.•.'■.•.••.•.-■.■.•••••.••■•:.•.••

(Üatääfrtäf^pfä&^&M ̂ ßf-^A; ^ bncjhe&j ;

ö$&

i^^MJ^

Figure 5-7. Output File cannot be opened.

58

. ■ -•■[....■■■■■•.

Seject In »mage

;jg^BKljEJ:

.ILGBVachwfitcofe '

BR Fries

Select tfiöäte

JiB-brnp

BRFite3

Select. Out Fite

■fenfifoinjp' •" •.,

• f o-i =-Tf

Textflle size Is iargßf t&arvimagß- Storage capacity usmfl RGB V-ecWrBUcodfe^.

I»
; /user sAi/ofk.-^Atfootter

' l dg4-ö.iHJm FT

/users/work-*Woatter
a ..öirectories/57 File

afCdPS •• •

: l Directories,97File'

Figure 5-8. Generate Diff Image Aborts when two files of
different graphic data size are used as input images.

4. SystemQ Invocation.

The plan for testing whether the system call resulted in a response was to

open two terminal windows, one for Steganography Toolbox to operate from, and the

other to test for a process fork using ps(), once prior to running the Simple Replace encode

selection and one during. The expected result was that the process could be identified.

Figure 5-9 shows the process bs_encode being forked.

ac8> ps

PID TT STAT TIME COMMAND

5637 co IW 0:00 /bin/csh /usr/bin/X 11/xinit

5643 co IW 0:00 /usr/bin/X 11/xinit.exec - /usr/bin/X 11/Xsun

5644 co S 12:22 /usr/bin/X 11/Xsun:0

5645 co IW 0:00 sh /users/work4/woottend/.xinitrc

Figure 5-9. bs_encode() Getting Forked

59

5657 co S 0:00 xclock -analog -bg MistyRose -fg DarkSlateBlue -hd black -g

5660 co IW 0:04xbiff

5661 co S 1:11 mwm

5663 pOIW 0:00-csh (tosh)

5662 plS 0:02-csh (tcsh)

19123 pi S 0:00 s-toolbox

19100 p2 S 0:00 -csh (tcsh)

19128 p2R 0:00 ps

ac8> ps

PID TT STAT TIME COMMAND

5637 co IW 0:00 /bin/csh /usr/bin/Xl 1/xinit

5643 co IW 0:00 /usr/bin/Xl 1/xinit.exec - /usr/bin/Xl 1/Xsun

5644 co S 12:23 /usr/bin/Xl 1/Xsun:0

5645 co IW 0:00 sh /users/work4/woottend/.xinitrc

5657 co IW 0:00 xclock -analog -bg MistyRose -fg DarkSlateBlue -hd black -g

5660 co S 0:04 xbiff

5661 co S 1:11 mwm

5663pOIW 0:00-csh(tcsh)

5662 plIW 0:02-csh (tcsh)

19123 pi S 0:04 s-toolbox

19143 pi S 0:00 sh -c bsencode /users/work4/woottend/thesis/suit/sparc/sr

19144 pi R 0:04 bs_encode /users/work4/woottend/thesis/suit/sparc/src/thesi

19100 p2 S 0:00 -csh (tcsh)

19145 p2 R 0:00 ps

ac8>

Figure 5-9(continued). bs_encode() Getting Forked.

5. Proper Image/Datafile Ratio

The only menu selections that represent this case are the encoding selec-

tions Simple Replace and RGB Vector encode. They are very important test cases how-

60

the input datafile could get truncated without such an error raised. The test plan was to

attempt to encode large data files into small image files to raise the error information box.

Figure 5-10 applies.

StesUMiäeakvTeäfc»*

''■ ' ' •'■ I"'" |

•WM^M^U**^

Sid^tn.pqt£ata -
.*Y" ■'-'-•--■••-'-■-"-'--■-■••■•'■'■•■"■■■''•■•'■•'•'■''••

Encoding
Ö!

:dctÖyiptrt Image!

$$$&$£]
;;3$^!ii>£^ä^i^

acest-robmp -

•■"■■■■■iVJ-.-

fj&bmp
1^;

: i.6*Bcturte3, saPtte;
MäWUH^k

.■'■■»; pi■»«'.;rt*.'','■'...'.'

Jßi«äörtes,'SBFfe

*0fcS

J"7? -earns?!:

Figure 5-10. Datafile Exceeds Image Capacity.

6. Widget Organization

Screen Layout is classified as an inspection category of goal.This ensures

no additional widgets have been forgotten in the module, perhaps formatted so that it

remains behind some other widget. The source code is balanced against the visual repre-

sentation for this.

7. Widget/Window Activation and Destruction

This is an execution goal class. Do the windows appear and disappear at

the right time? Table 5-1 summarizes the tests.

61

Table 5-1. Widget/Window Activation and Destruction.

Goal Widget Action Stimulus Expected

1 main menu display start-up display

3 File menu displays submenu mouse button display submenu

4 Encode menu displays submenu mouse button display submenu

5 Extract menu displays submenu mouse button display submenu

6 Display menu displays submenu mouse button display submenu

7 Help menu displays submenu mouse button display submenu

10 Delete dialog box displays confir-
mation, box

mouse on OK displays confir-
mation, box

12 Delete dialog box clear dialog box mouse on Cancel clear dialog
box

16 Convert dialog
box

clear dialog
box

mouse on Cancel clear dialog
box

17 Exit clear window, ter-
minate program

mouse on Exit clear window, ter
minate program

21 Simple replace
Dialog Box

clear dialog
box

mouse on Cancel clear dialog
box

25 RGB Vector dia-
log box

clear dialog
box

mouse on Cancel clear dialog
box

29 Simple Extract
dialog box

clear dialog
box

mouse on Cancel clear dialog
box

33 RGB Vector
Extract dialog

box

clear dialog
box

mouse on Cancel clear dialog
box

37 Display Image
dialog box

clear dialog
box

mouse on Cancel clear dialog
box

38 Display Image
dialog box

display XV panel
alone

mouse on OK display XV panel
alone

42 Generate Diff
Image dialog box

clear dialog
box

mouse on Cancel clear dialog
box

46 View Histogram clear dialog
box

mouse on Cancel
or OK

clear dialog
box

62

Table 5-1. Widget/Window Activation and Destruction.

Goal Widget Action Stimulus Expected

49 specific Help
Panel

display topic string
passed to Get-

HelpTopic

display

50 Browse Help dia-
log box

clear dialog box mouse on Cancel clear dialog
box

51 About Help infor-
mation

clear dialog box mouse on OK clear dialog box

F. CONCLUSIONS

It becomes clear early on in the testing battery that the more features that are added

to a program exponentially complicates the test plan.Two surprises did show up as part of

the testing: though no expressed exception handler was made for a failed "rm" UNIX

command or the ImageMagick "convert" command, both returned 1 from the stimulus of

insufficient parameters, which is the way the author intended.

63

64

VI. SUGGESTIONS FOR FUTURE DEVELOPMENT

A. A SUMMARY ADMONITION

In the introductory chapter to this thesis, steganographic techniques during the pre-

vious millenia were described. A by-product of the recent explosive availability of auto-

mated computing devices has provided the necessary medium for a resurgent and rapidly-

blooming interest in digital media steganography. The state of research in modern stegan-

ography applications is not mature; only recently have formal conferences on the topic

been established, as with Anderson (1996). To that end, it is important for the student

researcher who elects to "carry on the torch ", to at least contemplate the suggestions of

predecessors regarding useful areas for supplemental investigation.

B. SUGGESTIONS FOR FUTURE RESEARCH

1. Develop Algorithms to Encode into Other Digital Media

Digital Imagery is but one medium suitable for application of stegano-

graphic methodology. The research and implementation climate for digital audio and

video files is even more rarified than that of digital imagery.

2. Investigate Human Change Detection Thresholds for Digital Media

This is important human factors research for steganography. Since legiti-

mate scientific research is founded not only upon reproducability of experiments and sta-

tistical evaluation, tests of the effectiveness of algorithms should be developed and

performed on a population sample. An immediately tenable plan for implementation using

Steganography Toolbox would be to hook up a display script that presents side-by-side

comparisons of either identical images or an unencoded original image with it's encoded

counterpart.Test subjects could compare many images in one test session, so that sufficient

numerical data could be gathered..

65

3. Expand Statistical Representation of Data

In its current implementation, Steganography Toolbox offers but two ways

to view statistical data: Generate Diff Image and View Histogram. Other Callback func-

tions that present useful statistics should be added.

4. Develop Algorithms That Survive File Compression

Research by Currie and Campbell (1996) discuss this area of research, but

as new methods of file compression become available, new approaches to steganographic

encoding and extraction will certainly become necessary. An interesting research topic

related to this is the effect that passing digital data through an analog medium (such as tak-

ing a photograph of a digital image, or recording sound generated via digital audio signal

onto an analog tape) has on the ability to extract encoded data.

66

VII. STEGANOGRAPHY TOOLBOX VERSION 1.0
USER'S MANUAL

A. INTRODUCTION

This Users manual is presented in the following format:

MAIN MENU SELECTION

Submenu Selection

What the Selection Does

How To Invoke the Selection

An explanatory figure is placed at the bottom of each section to show what each

respective panel looks like. Help dialog boxes are available both on the selection dialog

box panel and via the Help Browser utility.To invoke Steganography Toolbox, change to

the directory in which it resides and type: s-toolbox. A University of Virginia banner will

display for a few seconds, and a window like that of Figure 7-1 will display. Use the left

mouse button to select menu panel buttons (This version does not implement hot keys).

Figure 7-1. Main Menu.

67

B. FILE MENU SELECTIONS

1. Convert File

a. What It Does

Convert File creates a new file with the image graphic file format

specified by the "convert to" filename extension. The user selects filenames to convert

from with a file browser, and either types a filename (with the desired extension added) or

uses the "convert to" file browser to select a file. The user may traverse the directory to

select filenames.

b. How To Invoke It

From the main menu select File, and then select Convert File for-

mat the submenu choices (see Figure 7-2). A panel will display like the one shown in Fig-

ure 7-3. either type in the filename of the desired "convert from" (including the full path if

not in the current directory), or use the scrollable file browser box to select the file. Enter a

"convert to" file name by typing it in the "convert to" type-in box or selecting the file from

the scrollable file browser. Be sure the suffix of the filename represents the desired file for-

mat, since this is how the utility knows what conversion to perform. Select OK to run the

file conversion utility, or Cancel to abort. If help is desired, press the help button.

Figure 7-2. File Submenu.

; CRel MM-

f-'-i

■ercimp

ätes£Öm)i:-

i

l Directories, ?? FÜes

MMMMlWU'v

jäw^:'

mamaummmmtä

Figure 7-3. Convert File panel.

2. Delete File

a. What It Does

Delete file removes a file of the user's choosing It prompts the user

with a "Are you sure" query prior to removing the file.

b. How To Invoke It

From the main menu select File, and then select Delete File from

the submenu choices (see Figure 7-2). A panel will display like the one shown in Figure 7-

4. Either type in the filename of the desired "Delete File" (including the full path if not in

the current directory), or use the scrollable file browser box to select the file. Select OK to

delete the file, or Cancel to abort. If OK is selected, than a query dialog box appears ask-

ing "Are you sure?" See Figure 7-5 to see what the "Are you sure" query box looks

like.Press OK to delete the file or Cancel to abort. If help is desired, press the help button

69

«mm mam
$^^£#$!jfT$&<&••;

1

arctmfi.

■ate?tbmp

j^ni^;^i^ia«Mii^^t*«p

#yÄ

;^KV

Cancel I:
«iViri;;iiiiit'i"i;>-'i''jv.

amaMoM

Figure 7-4. Delete File Panel.

f • S^«M#«5byT*i&a* '^vg-;«;;^;;;.--

:•: >;V.v>^v.:v.•■■:';;:>;;>^.v---■ :■-::-:v.v-'v-vi-:.■ c^iHf::'^^:-:v..;^'>'.•■..■••■■"'':J''

;.;;• ■iM*t$-:
Y:

öetetefite

?;'• i:. v
^Cfitf.;,

|: s§ ^»äSWäJJS; ■ r

'. ;':!'.:.-..v^;^ .* ':-.':' .;■;... .. ;.:.::'.■;.:;;;.':::•;::;:{v:;r.V-'-V.'. i

:, y DELETE Flit Am you swe you wanttotte tWs

lilliBiillll No 1 ' V;■■'■".!
.Vx'V-C.:AV-Vr-v^ •;:^>.-:^>v>.^/.-;.-v/-:'->vJ.

/usefs/work4Avoottendffl- BiiSl;!
- •'■^r'f^j^p^.-; "£ Vr v-:::-;'^.;vv-^v:V;v;--^\^V:^: ^

*:■? At /•^fe;;-.^Ä?Ä:>.5:

.V;>>;>;>'''-:

Figure 7-5. "Are You Sure?" Prompt.

70

3. Exit

a. What It Does

Exit closes any active windows and terminates the graphic user

interface. Since Toolbox operations are run as background processes, any process in mid

execution will continue to run until either it terminates by itself, or the user specifically

terminates it. As an example, the graphics viewer XV will continue to run even after exit-

ing Steganography Toolbox and may be closed manually from within XV.

b. How To Invoke It

From the main menu select File, and then select Exit from the sub-

menu choices (refer back to Figure 7-2). If help is desired, select the Help topic in the

Help Browser.

C. ENCODE MENU SELECTIONS

1. Simple Replace

a. What It Does

Simple Replace is a method for encoding data into Microsoft Bit-

map (.BMP) format images; it is found in the Encode submenu (Figure 7-6). Selecting

Simple replace presents a dialog box which, when filled with valid entries, opens the indi-

cated input image and data files, opens an output encoded image file and performs simple

replacement steganographic encoding with the two input files. A "steg header" is

appended onto the regular bitmap header, namely the size of the data file (in bytes) and the

encoding density. In Simple steganographic encoding the least significant bits of each byte

of image data is stripped and replaced with the commensurate number of data bits. The

user specifies the number of least significant bits to encode by entering an "Encode Den-

sity". Valid values are between one and seven. Once the entire data file has been encoded

into the image, all files are closed and the program terminates.

71

b. How To Invoke It

From the main menu select Encode, and then select Simple Replace

(.BMP) from the submenu choices (see Figure 7-6). A panel will display like the one

shown in Figure 7-7. Either type in the filename of the desired file (including the full path-

if not in the current directory), or use the scrollable file browser box to select the file. Do

this for "Select Input Image", "Select Input Data", and "Select Output Image". Enter an

encode density by typing an integer value between one and seven into the type-in box

labeled "Encoding Density (1-7)". Select OK to run the simple replacement encoding util-

ity, or Cancel to abort. If help is desired, press the help button.

S29QE3

Figure 7-6. Encode Submenu.

72

ti$f
Select input image ..

^liftiiiiii
Select Output tmaöe

Encoding :
3ehsfo-<W}

rv!.f

ffil-Ä:

>;;

lÄÄ^l^: l#ilflii^ ;;::v:;;-y^V:^V;:;:%^{^**

atesttomp :

äs-?

■f '

ir'.-
te'i

«EJPS ' ' - ' t'
atestbmp ■'

/us03^rfc4tapqfter' •'

•arej&&$; . ..• ^ :

arc.giT ' . ' ."•>

toers/wofMATOOBer
1 Directories, 77 File '

■ Mi^js-

||5||||g||.

''•^^•ä'^'?^ ^•':-y- .'->:\.:">;?V-S'%£;S.:. ■■.'■. ^}'.;'-'^p'-i^\r" §S%IS*i#

Figure 7-7. Simple Encode Panel.

2. RGB Vector

a. What It Does

RGB Vector invokes the RGB Vector encoding program developed

by Campbell and Currie. The algorithm treats each three-byte triple as a a vector in RGB

colorspace. The length of the vector is changed such that it's modulus mod 62 is changed

depending on the value of the bit to be encoded. Currie and Campbell state, "Because the

vector's direction is unmodified, the relative sizes of the color channel values are pre-

served. An input image and data file are required, as is an output data file.

b. How To Invoke It

From the main menu select Encode, and then select RGB Vector

(.BMP) from the submenu choices (see Figure 7-6). A panel will display like the one

shown in Figure 7-8. Either type in the filename of the desired file (including the full path

if not in the current directory), or use the scrollable file browser box to select the file. Do

73

this for "Select In Image", "Select In Data", and "Select Out File". Select OK to run the

RGB Vector encoding utility, or Cancel to abort. If help is desired, press the help button.

Ste««Mgr»yliJ<T<>il&(Dc

:, Select toImage :|

hwfti*lfciililm»*AI*lil*

«fcbintf... "

atesfcKJfcbffip

1 OffEctofies. 77 fite

RGB Vector Encoded

MiMMMMaaäw

•./{GfrUp.leHnu

•«e&taqj.;.- '•'
atestoutbmp

/itSers^wk^woottef

BRRe3 ■

ercbmp-'-

atestbmp

:*$&

Canoe)

brjtffe j

Figure 7-8. RGB Vector Panel.

D. EXTRACT MENU SELECTIONS

1. Simple Extract

a. What It Does

Simple Extract is a method for retrieving data from Microsoft Bit-

map (.BMP) format images that were encoded using the simple replacement algorithm

created by Currie and Campbell (1996); it is found in the Extract submenu (Figure 7-9).

Selecting Simple Replace Extract presents a dialog box which, when filled with valid

entries, opens the indicated steganographically encoded input image file, opens an output

data file and performs bytewise extraction on the input image file, piping the output to the

selected output data file. A "steg header", an additional header appended onto the regular

bitmap header, which provides namely the size of the data file (in bytes) and the encoding

density, is first read from the input image file. Once the entire data file has been extracted

74

from the image, both files are closed and the program terminates.

How To Invoke It

From the main menu select Extract, and then select Simple Replace

Extract (.BMP) from the submenu choices (see Figure 7-9). A panel will display as shown

in Figure 7-10. Either type in the filename of the desired file (including the full path if not

in the current directory), or use the scrollable file browser box to select the file. Do this for

"Get Input Image" and "Get Output Data". Select OK to run the simple replacement

encoding utility, or Cancel to abort. If help is desired, press the help button.

iiiSSÄS
'«tte Kam««' .antuen j öiupt.? ' «Mpkfeni,;

*«*l» l«^rt»rf linw { Du»)

Figure 7-9. Extract Submenu.

75

i^fa^tjgfcjS^TjMlbrt-y.

Simpte Extract

SSXFileJ- •

Get («put Image

arcjpg.

Jail

/usersAwark*Woottenc:

::BSXf«e2 .:■

Get OutputOäla ■'

./{GDupVOtett
arc'.bmp -.

i Directories, 77 FUeS

:SS^^

:OK

Cancel

?;;Zi

Figure 7-10. Simple Extract Panel.

RGB Vector Extract

a. What It Does

RGB Vector Extract is a method for retrieving data from Microsoft

Bitmap (.BMP) format images that were encoded using the RGB Vector extraction algo-

rithm created by Currie and Campbell (1996); it is found in the Extract submenu (refer

back to Figure 7-9). Selecting RGB Vector Extract presents a dialog box which, when

filled with valid entries, opens the indicated steganographically encoded input image file,

opens an output data file and performs bytewise extraction on the input image file, piping

the output to the selected output data file. No "steg header" is appended onto the regular

bitmap header, and, in this version, the user must supply the original encoded data file

size. This information is displayed on the terminal window from which Steganography

Toolbox was invoked, when the RGB Vector encoding selection is invoked. Once the

entire data file has been extracted from the image, both files are closed and the program

terminates.

76

b. How To Invoke It

From the main menu select Extract, and then select RGB Vector

Extract (.BMP) from the submenu choices (see Figure 7-9). A panel will display as shown

in Figure 7-11. Either type in the filename of the desired file (including the full path if not

in the current directory), or use the scrollable file browser box to select the file. Do this for

"Select Input Image" and "Select Output Data". Select OK to run the RGB Vector extrac-

tion utility, or Cancel to abort. If help is desired, press the help button.

''■^^'^'^•^^■y^y'''- ■;-■ ■&&& i. -i-V-^'': :" :f'<:■'- .x'.^.Vi.j
; v.: •::'<i\Zvs&&}?-^ •X^^OK-V^

•'I

■'PK]•:•'' •

Select Output Data.I.-

':■"■%

--''.

'V :*•**' £•

lillplfflc;

'&&:

C:-;v-3^:r-^:#;-

arc.bmp
a--

IN

./(<3oap 1 almit m
0-K

■f- .

m

■<■■:■.

M& #l-i ;-flJ^ nter öf'goBode'd-Syi ies^ WXM& $11^' w

Figure 7-11. RGB Vector Extract.

77

E. DISPLAY MENU SELECTIONS

1. Display Image

a. What It Does

The Display Image submenu selection makes a system() call to XV

version 3.00. All of XV's functionality is available to the user, and it is run as a back-

ground process, to the user can display as many images as s/he desires, while using other

Steganography Toolbox utilities.

b. How To Invoke It

From the main menu select Display, and then select Display Image

from the submenu choices (see Figure 7-12). A panel will display las in Figure

7-13. Either type in the filename of the desired "Select Display Image" (including the full

path if not in the current directory), or use the scrollable file browser box to select the file.

Select OK to display the file, or Cancel to abort. If help is desired, press the help button

Figure 7-12. Display Submenu.

78

i& Ste$«nogr«j4y Toolbar :-£v?'vf;^''-^

'* •OK j .
>.•;-.:..•.:•.••-v:. -:r.'-

. .'-DJgp.teyfroaaeO
Caneet j : •'.•:-.

■:''

S^te?£.CSsisiayiwa§e':-- IS - •;
;;S ClfmlfPW :,:^:;'"

\k -0; j?:{äfl-uftl directory * •' ■•' V .*". - •' "■ >"i '"1.

^: V;'
• • .-

wEjpg . • • •. • .-;:
aiestbap

7
i|@£|&2l§

:vÄv->v.'^\i:';}

'/usersft/brMtooottendm- '0$$M$$g§

■i.

i-:^jjäis&8^^%ff^;;-;::v
W$&0$ß.

.xrojfeip:] •••; -

\4:ji -.

: • .; ' . . .••>■■>■:

Figure 7-13. Display An Image Dialog Box.

2. Generate Diff Image

a. What It Does

The Selection Generate Diff Image accepts a Microsoft Windows

Bitmap (.BMP) image format file, and its steganographically encoded equivalent, and cre-

ates an absolute difference image. It invokes a system() call to a program created by Currie

and Campbell (1996). The program opens the two input image files, compares the header

information to ensure they are the equivalent image, and makes a bytewise comparison of

the image data. Brightness values are related to the absolute bit difference for the three-

byte triple, representing the RGB brightness components of the pixel. Every three bits of

change represents a different brightness level in the output image. Additionally, a file

named "histdat" is opened, and the contributing filenames, numbers of pixels in each

three-bit change histogram bin, and total number of pixels that were different are written

to the file. Then all open files are closed and the program terminates.

79

b. How To Invoke It

From the main menu select Display, and then select Generate Diff

Image from the submenu choices (refer back to Figure 7-12). A panel will display as

shown in Figure 7-14. Either type in the filename of the desired file (including the full path

if not in the current directory), or use the scrollable file browser box to select the file. Do

this for "Select First BMP Image", "Select Second BMP Image", and "Name Diff BMP

Image". Select OK to run the diff image generation utility, or Cancel to abort. A file

"histdat" will also be created in the local directory, or overwritten if it already exists.If

help is desired, press the help button.

QOFdst

NameFlßtflMPima

$PSP£1

1 Direöpnes. 7? Fife

Nomfe Second flMPT

arttfcsag-- ;
arcgtf •;

asm ":i

GDFife3

* - ; I :

SfC-öff
arojpg

■atestoutbmp ;

/USSf5/\tt0rt«:<l/W0D{

aSTs
Si':
ft*-

ST

?%&$&:■$

jj^#4'

Figure 7-14. Generate Diff Image Dialog Box

3. View Histogram

a. What It Does

View Histogram displays a dialog box containing a diff image his-

togram based on data contained in "histdat". This histogram data file is created when

Generate Diff Image is invoked (see the above section on Generate Diff Image). The dia-

log box presents the names of the contributing image files, the histogram values of each

80

bin, and the total number of pixels altered.

b. How To Invoke It

From the main menu select Display, and then select View Histo-

gram from the submenu choices (refer back to Figure 7-12). A panel will display like the

one shown in Figure 7-15. When done viewing the histogram select OK or Cancel (since

the SUIT command SUIT_createOKCancelDialogBox() was used to contain all the histo-

gram scroller widgets and the dialog box performs no other callback, REPLY_OK and

REPLY_CANCEL contain a NULL callback response. (See Chapter IV for more informa-

tion regarding SUIT program structures.).If help is desired, press the help button.

£&Ä • .v \ : «taut]««
TetrfjEhflftats:

aa_Hd)> W&

■•.:•■•■• ■•■•:••• •■..•:|-.l.-

m } «-.3 '.■ *~ff' /?« 1M2 13-« t$«-tS ■ W-2f &-H

Figure 7-15. View Histogram Dialog Box.

81

F. HELP MENU SELECTIONS

1. Browse Help

a. What It Does

The Browse Help selection presents a scrollable textbox, which

provides help topics the user may select. The displayed Help dialog boxes typically list the

function and proper use of a selection.

b. How To Invoke It

From the Main Menu, choose Help Menu. A submenu like that in

Figure 7-16 will appear. Choose Browse Help from the available options. A dialog box

will be presented to the user like that of Figure 7-17, which contains a scrollable list of

help topics. Highlight the desired topic and select OK to view the help topic dialog box, or

Cancel to abort.

ESSS2E33

*a« Saooie-. kxtnot Bbpbp HOgMeröi= |j!j

AboMtSWSjp

Figure 7-16. Help Submenu.

82

ßU ßaewte- gsr«trt Öispfey Sdp*(«n>

Delete Rte

5xlt

1! Cancel

Figure 7-17. Help Browser Dialog Box.

2. Help From Within Toolbox Panel

a. What It Does

Individual help topics related to specific Steganography Toolbox

help panels are also accessible from the respective dialog box panel, as shown in Figure 7-

18.

b. How To Invoke It

To access the help topic dialog box press the help button on the

respective panel for which help is desired. Press OK on the presented dialog box to view

successive help panels or select Cancel to abort.

83

Select Irtpul Image

-/{Coup 1 türec

arcjpg
•a$est*rap'/v

ki* =

Simple Encode

10'
: Sefec

w.
:. These are
the Simple

Panel He^)
; Nqtes.Click

OK

Cancel

ateatautbfnp
%

-•tvÜTOCiortes,7?f8e'

Encoding

W.
im

*&
&gef5A«rk4Awoaef

l:fSrectones,?7Bi8

n

."6|$!($&

iSeast:

Density) , oncei -{

Figure 7-18. Help Dialog Box From Within a Steganography
Toolbox Dialog Box.

84

APPENDIX A. SOFTWARE DESIGN

1. Scope

This appendix summarizes the functional requirements for Steganography tool-

box.to include, system objectives and process specifications of its components. The Stega-

nography Toolbox is a software package that shall assist the user in the study and

development of steganography algorithms. It shall provide tools that display images and

convert them from one image format to another, encode data into and extract data from

images using steganographic algorithms, and generate and display useful statistics.

Steganography Toolbox

File Tools

i—S—i
Convert Delete Exit
Format File

Steganography
Tools I

Encoding
Tools

Extraction
Tools

BMP BMP BMP BMP
_Simple _RGB _Simple _RGB
„Encode _Vector _Encode Vector

Encode Encode

I
Display tools

H 1
Statistical Display

Analysis Tools Image

i—' 1
Generate Display
„Statistics Histogram

Figure A-l. Functional Diagram

Objectives are as follows:

1) Convert digital images from one digital image format to another

1.1) Convert .BMP image files to JPEG image format

2) Encode digital data into digital imagery

2.1) Encode digital data into a .BMP image using simple replacement

2.2) Encode digital data into a .BMP image using RGB Vector method

3) Extract previously encoded digital data from digital images

3.1) Extract digital data from .BMP images encoded using simple replacement
method

85

3.2) Extract digital data from .BMP images encoded using RGB Vector method

4) Display digital images on the terminal screen

5) Generate statistics

6) Display statistics in a graphically coherent fashion

6.1) Display absolute difference image of two input images

7) Delete files

2. Hardware, Software, and User Interface

This system is capable of running in any X windows-compatible environment.

Since the initial implementation of this system centers on tools to steganographically

encode digital imagery (vice audio media) the workstation should have a 21" monitor to

display and compare images. A 3 1/2" high density floppy drive should be available to

copy image files.

Aside from the code that actually encodes and extracts data from image files, and

that which creates an absolute difference image of 2 input images, all other tools in this

toolbox are available as freeware on the Internet. Image display functions are performed

by XV version 3.0, which can be downloaded as a 2.2Mb gzipped tar file. Image file for-

mat conversion is performed by ImageMagick version 3.7 which is a 700 Kb gzipped tar

file. Finally, the component of image file format conversion which performs JPEG com-

pression is performed by the International JPEG Group's compression utility version 6

which is available as a 531 Kb gzipped tar file. ImageMagick and the IJG jpeg conversion

utility come as source code with Makefiles as part of their tar file, so the platform this sys-

tem is placed on must also have available a C or C++ compiler.

The graphic user interface is itself a software tool, for the development of gui

interfaces. It is called "Simple User Interface Toolkit", or SUIT, and it is available as a 2.1

Mb zipped tar file. This file is platform-specific, and is configured for Sun3, Sun 4 (Sparc-

station), SGI IRIS, DEC, HP, IBM PC, and Macintosh.

86

3. Major Design Constraints and Limitations

• Platform of use is limited to those described as compatible with SUIT.

• Each of the freeware tools must be installed separately;

• Installation of IJG JPEG compression utility must precede installation of

ImageMagick, since ImageMagick looks for it during it's installation.

• If the workstation the Steganography Toolbox is installed on has no Internet

access, some Input/Output device with a capacity larger than the largest tar file.

4. Reference Documents

• Simple User Interface Toolkit Reference Manual

• ImageMagick version 3.7 README file

• IJG JPEG compression utility version 6 README file

• XV version3.00 Reference Manual

5. Process Specifications Outline

Process Specification 1: Convert_Format

Process Specification 2: BMP_Simple_Encode

Process Specification 3: BMP_Simple_Extract

Process Specification 4: BMP_Compare_Images

Process Specification 5: BMP_RGB_Encode

Process Specification 6: BMP_RGB_Extract

Process Specification 7: Delete_File

Process Specification 8: Display_Image

Process Specification 9: Generate_Diff_image

Process Specification 10: View_Histogram

87

6. Process Specifications

Process Specification 1

Name: Convert_Format

Requirement Satisfied: 1.1

Description: Convert_Format is invoked with a system call (system()) to the International

JPEG Group program convert(), followed by the arguments infile and outfile. Convert

restructures the image format recognized by the infile suffix to the format indicated by the

outfile format suffix, which may include data compression.

Inputs:

infile: filename of the input image of the format recognized by convert

Outputs:

outfile: filename of output image in converted format described by outfile's suffix

Errors:

1) input image filename not found

2)unrecognized input image filename suffix „

3) no output filename provided

4) unrecognized output filename suffix

Process Specification 2

Name:

BMP_Simple_Encode

Requirement Satisfied:

2.1

Description:

BMP_Simple_Encode opens infile textfile and outfile. It reads the header information from

infile and writes it to outfile. It then compares the size of the input file listed in m/z/e.head-

ersize to the amount of bytes it requires to encode all of the textfile divided into density-bit

segments. Provided there is room, it writes the textfile size (in bytes) and density to outfile,

called stegheadl and steghead2, respectively. These values are themselves encoded into

88

the least significant 2 bits of the 24 bytes following the original outfile header.

BMP_Simple_Encode then reads a textbyte, and if it is not the textfile end-of -file marker,

it reads an image byte, register-shifts out the least significant density bits in it and logically

AND's it to the most significant density bits of the textbyte. While it has textbits left to

encode it will continue. If there are fewer than density bits remaining in textbyte, it will

read another byte of the textfile and concatenate the byte to the remaining bits of textbyte.

Once an image byte is encoded it is written to outfile. Once all of the textfile has been

encoded into to outfile, infile, textfile, and outfile are closed and control is passed to the

main program.

Inputs:

infile: input image in .BMP image format.

textfile: input data file

density: integer between 1 and 7, which describes the number of bits to encode per image

byte

Outputs:

outfile: output image in .BMP image format

Errors:

1) infile is too small to encode all of textfile at density density

2) infile not found

3) infile not in .BMP format

Process Specification 3

Name:

BMP_Simple_Extract

Requirement Satisfied:

3.1

Description:

BMP_Simple_Extract opens stegfile and data_out_file. It reads the stegfile standard .BMP

file header, and then from the next 24 bytes reads the least 2 significant bits of each byte.

these are concatenated to form the textfile size that was originally encoded into stegfile,

89

and the density (bits per byte) recorded. While the number of bytes written to

dataoutjile are less than data_outJde size it reads a stegfile byte; reads the least density

significant bits of that byte, and writes it to a temporary register which concatenates and

holds these segments, once the size of the bitstring in the register is greater than a byte, it

writes that byte of the register to dataoutjile and increments a counter that tracks the

current number of bytes written to dataoutjile. When the dataoutjile size is reached,

stegfile and dataoutjile are closed and control is returned to the main program.

Inputs:

stegfile: input .BMP image filename with encoded data

Output;

dataoutjile: output file which contains extracted data

Errors:

1) badly formed header

2) nonexistent input filename

3) no output filename indicated

4) unrecognized image file format

Process Specification 4

Name:

BMP_Compare Images

Requirement Satisfied:

6.1

Description:

BMP_Compare_Images opens 2 input image files of .BMP format and a mapfile .BMP

image, it reads the input image file headers to verify if they are the same size. If they are it

reads 3 bytes of each input file and compares each respective byte (these are the blue,

green, and red component brightness values of each pixel.)It takes the average of the 3

component differences. If the absolute difference is 0, a white pixel is written to the map-

file(3 bytes of OxFFFF). If the averaged absolute difference is greater than 0, it increments

a counter that corresponds to the number of pixels that differ within the specified range of

90

bits. The ranges are 1-3 bits difference, 4-6,7-9, and

so on up to 22-24 bits difference. If there is a difference in any of the blue, green or red

brightness values, a dark pixel is written; the more bits difference, the darker the pixel.

When all the input files' pixels have been compared, the counter values are displayed to

standard output, all opened files are closed, and control is passed back to the main pro-

gram.

Inputs:

fileljdel: input manges in .BMP format

Output:

mapfile: output absolute average difference image in .BMP format

Errors:

1) Bad value in Switch Statement (out of range error)

2) Bitmaps are of different size

3) One or both of the images is not in .BMP format

4) Input image filename not found

Process Specification 5

Name:

BMP_RGB_Encode

Requirement Satisfied:

2.2

Description:

BMP_RGB_Encode opens infile textfile and outfile. It reads the header information from

infile and writes it to outfile. It then compares the size of the input file listed in infile.head-

ersize to the amount of bytes it requires to encode all of the textfile. If there is room,

BMP_Simple_Encode then reads a textbyte, and if it is not the textfile end-of-file marker,

it reads 3 image bytes (a pixel), and converts it to a vector value using the three bytes as

vector components. This distance modulo 62 is calculated. The remainder is the part of the

value that gets embedded. K the text bit to be embedded is a zero, the remainder of the

vector shall be assigned 17, which is the middle of the lower half of the remainder range.

91

If the text bit is a one, the remainder is assigned the value 47. Five pixels are embedded

with the same bit value, but the distance between encoded pixels shall vary,based on the

skip distance. This skip distance is calculated by dividing the number of image pixels by

the product of the redundancy value (in this case, five) and the number of bits in the text-

file., then While it has textbits left to encode it will continue to embed pixels. Once an

image byte is encoded it is written to outfile. Once all of the textfile has been encoded into

to outfile, infile, textfile, and outfile are closed and control is passed to the main program.

Inputs:

infile: input image in .BMP image format.

textfile: input data file

Outputs:

outfile: output image in .BMP image format

Errors:

1) infile is too small to encode all of textfile

2) infile not found

3) Outfile not found.

Process Specification 6

Name:

BMP_RGB_Extract

Requirement Satisfied:

3.2

Description:

BMP_RGB_Extract opens stegfile and dataoutjde. It reads the stegfile standard .BMP

file header, and the long integer value textbytes, which represents the user-supplied size of

the file to be extracted. An extracted-byte counter is maintained. While the current value

of the extracted byte counter is less than textbytes, it will read a pixel, convert it to a vec-

tor value of the three component byte values, and evaluate the remainder modulo 62. If the

remainder is closer to 17 than 47, it will write a zero to the dataoutjde. If the remainder

is closer to 47 than 17, it shall write a one to the outfile. When dataoutjde size is

92

reached, stegfile and data_out_file are closed and control is returned to the main program.

Inputs:

stegfile: input .BMP image filename with encoded data

Output:

dataoutJile: output file which contains extracted data

Errors:

1) Stegfile not found

2)Data_out_file not found.

Process Specification 7

Name: Delete File

Requirement Satisfied: 7

Description: Delete File is invoked with a system call (system()), where the argument is a

character string, The character string starts with the UNIX command rm, followed by a

blank space. Appended to this string is the filename to be deleted. Following the filename

entry and prior to the system() call, the user is asked via a dialog box, if he is sure he wants

to do this. If "Yes" is selected, the system() call is invoked, and the file is deleted. If "no"

is answered, the query panel and the file selection dialog box are destroyed.

Inputs;

infile: filename of the input image of the format recognized by convert

Outputs:

None.

Errors:

1) image filename not found

2) no output filename provided

93

Process Specification 8

Name: Displayjmage

Requirement Satisfied: 4

Description: Display_Image invokes a system call (systemf)) to the XV Version 3.00

graphics file viewer followed by the argument infile.

Inputs:

infile: filename of the input image of the format recognized by convert

Outputs:

none

Errors:

1) input image filename not found

2)unrecognized input image filename suffix (handled by XV)

Process Specification 9

Name: Generate_Diff_Image

Requirement Satisfied: 5,6,6.1

Description: Generate_Diff_Image invokes a system call (system()) to convert(), fol-

lowed by the arguments infilel infile2 outfile. It first opens the files and then examines the

header value infilel.filesize and infilel.filesize to confirm they are equal. If they are it then

writes a Microsoft Windows Bitmap format image that shows the absolute change

between infilel and infilel of each red green and blue byte, with darker pixels representing

greater change in the pixel.

Inputs:

infilel,infilel: filenames of the input images of the format recognized by convert

Outputs:

outfile: filename of the output image created by convertQ

Errors:

1) input image filename not found

2)unable to open outfile

94

Process Specification 10

Name: View_Histogram

Requirement Satisfied: 5,6,6.1

Description: View_Histogram looks for the file "histdat", an input file created originally

by the most recent execution of Generate_Diff_Image It reads The character strings filel

and file2 eight long integer values representing the number if changed bytes compared,

divided into eight histogram bins (There are three absolute bits of change per bin value).

Finally a long integer, representing the total number of bytes changed, is read. These val-

ues are then displayed in histogram format, where the histogram is normalized to lOO.The

filenames and total bytes difference is also displayed.

Inputs:

"hist.dat": generated by the most recent execution of Generate_Diff_Image.

Outputs:

none

Errors:

1) "hist.dot" not found

95

96

APPENDIX B. SOURCE CODE

1. INTRODUCTION

Source code for Steganography Toolbox is listed in this appendix.While the
current application of Steganography Toolbox includes the files:

• toolbox.c
• toolbox_help.h
• generic_steg.C
• generic.extract.C
• rgb_steg.C
• rgb_extract.C
• compare. C

the latter four files, written by Campbell and Currie(1996) and adapted for use

with the graphic user interface, will not be included. The modifications made to their

source code merely enabled them to be executed in the "arge, argv[]" format, and pass

error condition values depending on the error..

2. TOOLBOX.C

* toolbox.c - By LT D. R. Wootten
* This program displays a menu of steganography
tool options. It invokes independently executable programs through the use of
system() calls. In order to "hook the programs up", they must be of the form
program_name argl arg2 arg3 ... where arg is some parameter it needs to use. Write the
program using "arge" and "argv[]". Then set up this file to use
it, according to the following steps:

1. Add a submenu selection, adding a button to the main menu button bar, if
necessary.

2. Write the callback to display a dialog box widget, containing all the
child widgets on a single "bulletin board" widget.

3. Have it form a character string starting with the program you wish to make the system
call to. use strcpy() to start it and strcat() to append arguments onto it.

4. invoke system() using the string as the argument, if you want error
message panels to display if the program aborts, define an integer variable
and assign the return value (exit status) to the variable, insert exit()

97

calls in the appropriate sections of the system()-invoked program. Remember
that the value returned will be bit-shifted 8 more significant bits by the
time it gets back to this program. Use SUIT_inform() in a switch statement to display
your message.

5. Make a help panel for it and hook it up to the BrowseHelp widget found in
"toolboxjielp.h"

I commented Convert() pretty heavily, and then further down only as I thought
necessary. Quite honestly, you might keep one eye looking out for a good

GUI builder that compiles in C++ (that we can get a license for). This one was public
domain freeware and free is a good thing (but not always a great thing).

die *& ife^fc ^If^fe 2$£ Sl£2& $c 2ff 2^£ dk dtc *I> i&* lie ife ile ^le lie iJe lie sie sie sie sie sie sie sie sie lie lie lie lie lie lie lie lie sie si? sie /

#include <stdio.h>
#include "suith"
#include "toolbox_help.h"

void Convert(SUIT_object menu) {

/* Declare the SUIT_objects */
SUIT_object c_container, c_fboxl,c_fbox2,c_h_button,

c_dBox, c_label;

/♦Declare anything else you need*/
char* fuel;
char* file2;
char* c_path = " ../../../../ImageMagick/convert";
char cf[256];
int errornum; /*This gets the return value of your system() call*/

/*Bind the object names to widgets*/
c_container = SUIT_createBulletinBoard ("C Container");
c_fboxl = SUIT_createFileBrowser(

"c_barney","","C Filel","Select Input Image",NULL);
c_fbox2 = SUIT_createFileBrowser(

nc_wilma","","C File2","Select Output Image",NULL);
c_h_button = SUIT_createButton("chelp", HelpConvert);

98

/*Size the panel that will hold the widgets*/
SUIT_changeObjectSize(c_container, 400,340);

/* Assign widgets to the panel wigget as children*/
SUIT_addChildToObject(c_container, c_fboxl);
SUIT_addChildToObject(c_container, c_fbox2);
SUIT_addChildToObject(c_container, c_h_button);
cjabel = SUIT_createLabel("Convert File Format");

/*This one lets you set the font of the text label*/
SUIT_setFont(c_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(c_container,c_label);

/* This allows you to set the location of the widgets on the parent
widget with x,y coordinates from 0 to 1 for the lower left
and upper right widget corners*/
SUIT_setViewport(c_label, VIEWPORT,

SUIT_mapToParent(c_label, 0.3,0.9,0.7,0.95));
SUIT_setViewport(c_fboxl, VIEWPORT,

SUIT_mapToParent(c_fboxl, 0.05,0.15,0.45,0.85));
SUIT_setViewport(c_fbox2, VIEWPORT,

SUIT_mapToParent(c_fbox2,0.55,0.15,0.95,0.85));
SUIT_setViewport(c_h_button, VIEWPORT,

SUIT_mapToParent(c_h_button, 0.45,0.05,0.55,0.1));

/*This SUIT callback binds a dialog box widget, bontaining the panel you made
with the child widgets on it, to an object name*/
c_dBox = SUrr_createOKCancelDialogBox("c_fred", c_container, NULL);

/*This call displays the box, as it implies*/
SUIT_activateDialogBox(c_dBox);

/*SUIT has other dialog box widgets that include yes,no,etc, but these two
REPLY_OK and REPLY_CANCEL are the only two options for this widget.
Be sure to look down at the Delete callback to see how a validation function
is applied to the reply.*/

switch (SUIT_getInteger(c_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
fuel = SUIT_getText(c_fboxl, CURRENT_VALUE);
file2 = SUIT_getText(c_fbox2, CURRENT_VALUE);
strcpy (cf, c_path);
strcat (cf, filel);
strcat (cf,"");

99

strcat (cf, file2);

/*The return value of the system call is passed to errornum, which can then
be used to display an advisory dialog box when special values come back.*/

errornum = system(cf);
advisory(errornum);
break;

}

/* After the switch statement clear the dialog box from the screen*/
SUIT_destroyObject(c_dBox);

}

boolean DF_OK(SUIT_object df_panel){
switch (SUIT_askYesNo("DELETE FILE: Are you sure you want to do this

?")){
case REPLY_YES:
return TRUE;
break;

case REPLY_NO:
return FALSE;
break;

}
}

/*P «K 5jc 5p sjs •?! si» 5p SK 3(c sjc Jjc J(t sji 3js I)|^ I IH ' I "In *K yfi f« ?P 3j* Pp V *J* t* •$• *P f* ^K *I* *T* *K •!• *t* I

void Delete(SUIT_object menu){
SUIT_object df_h_button,df_fboxl,df_panel,df_dBox, df_label;
char *fdel;
char df[256];
int errornum;

df_panel = SUIT_createBulletinBoard("D F Panel");
df_fboxl = SUIT_createFileBrowser("df_barney","",,'Delete 1 File",

"Select Delete File:",NULL);
df_h_button = SUrr_createButton("DF_Help",HelpDelete);
SUIT_changeObjectSize(df_panel,200,340);
SUIT_addChüdToObject(df_panel,df_fboxl);
SUIT_addChildToObject(df_panel,df_h_button);
dfjabel = SUIT_createLabel("Delete File");
SUIT_setFont(df_label,FONT,GP_defFont("times","bold",12));

100

SUIT_addChildToObject(df_panel,df_label);
SUIT_setViewport(df_label, VIEWPORT,

SUIT_mapToParent(df_label, 0.3,0.9,0.7,0.95));
SUIT_setViewport(df_fboxl, VIEWPORT,

SUIT_mapToParent(df_fboxl, 0.05,0.15,0.95,0.85));
SUIT_setViewport(df_h_button, VIEWPORT,

SUIT_mapToParent(df_h_button, 0.45,0.05,0.55,0.1));

/*The third parameter of the below SUIT callback is a validation function.
It permits you to dummy-proof the values passed, when REPLY_OK gets sent.*/

df_dBox = SUIT_createOKCancelDialogBox("df_fred", df_panel, DF_OK);
SUIT_activateDialogBox(df_dBox);

switch (SUIT_getInteger(df_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
fdel = SUlT_getText(df_fboxl, CURRENT_VALUE);
if(fdel!=NULL){

strcpy (df, "rm ");
strcat (df, fdel);
errornum = system(df);
advisory(errornum);

}
break;

}

SUIT_destroyObject(df_dBox);

}

/*****************BlYlp SIMPLE (ENCODE)**************/
void BMP_Simple(SUIT_object menu)
{

SUIT_object bs_container, bs_fboxl,bs_fbox2,bs_fbox3,density,
bs_h_button,bs_dBox, bs_label,bs_labell, bs_label2;

char* filel;
char* file2;
char* file3;
char bs[256];
int den_val;
char* den_char;
int errornum;

101

bs_container = SUIT_createBulletinBoard ("BS Container");
bsjfboxl = SUIT_createFileBrowser(

"barney'V'V'BS Fuel","Select Input Image",NULL);
bs_fbox2 = SUIT_createFileBrowser(

"wüma","","BS File2","Select Input Data",NULL);
bs_fbox3 = SUIT_createFileBrowser(

"dino","","BS File3","Select Output Image",NULL);
density = SUIT_createTypeInBox("density value", NULL);
bs_h_button = SUIT_createButton("bs_help",HelpBMP_Simple);

SUIT_changeObjectSize(bs_container, 600, 340);

SUIT_addChildToObject(bs_container, bs_fbox 1);
SUIT_addChildToObject(bs_container, bs_fbox2);
SUIT_addChildToObject(bs_container, bs_fbox3);
SUIT_addChildToObject(bs_container, density);
SUIT_addChildToObject(bs_container, bs_h_button);
bsjabel = SUIT_createLabel("Simple Encode");
SUIT_setFont(bs_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(bs_container,bs_label);
SUIT_setViewport(bs_label, VIEWPORT,

SUIT_mapToParent(bs_label, 0.3,0.9,0.7,0.95));
bsjabell = SUIT_createLabel("Encoding");
SUIT_addChildToObject(bs_container,bs_labell);
SUIT_setViewport(bs_labell, VIEWPORT,

SUIT_mapToParent(bs_labell, 0.875,0.91,0.975,0.95));
bs_label2 = SUIT_createLabel("Density (1-7)");
SUIT_addChildToObject(bs_container,bs_label2);

SUIT_setViewport(bs_label2, VIEWPORT,
SUIT_mapToParent(bs_label2,0.875,0.85,0.975,0.89));

SUIT_setViewport(bs_fboxl, VIEWPORT,
SUIT_mapToParent(bs_fboxl, 0.05,0.05,0.3,0.85));

SUIT_setViewport(bs_fbox2, VIEWPORT,
SUIT_mapToParent(bs_fbox2,0.325, 0.05,0.575, 0.85));

SUIT_setViewport(bs_fbox3, VIEWPORT,
SUIT_mapToParent(bs_fbox3,0.6,0.05,0.85,0.85));

SUIT_setViewport(density, VIEWPORT,
SUIT_mapToParent(density, 0.9,0.775,0.95,0.825));

SUIT_setViewport(bs_h_button, VIEWPORT,
SUIT_mapToParent(bs_h_button, 0.88,0.43,0.97,0.50));

bs_dBox = SUIT_createOKCancelDialogBox("fred", bs_container, NULL);
SUIT_activateDialogBox(bs_dBox);

102

switch (SUrr_getInteger(bs_dBox, "button pressed")) {
case REPLY_CANCEL:
break;
case REPLY_OK:
filel = SUTT_getText(bs_fboxl, CURRENT_VALUE);
file2 = SUIT_getText(bs_fbox2, CURRENT_VALUE);
file3 = SUIT_getText(bs_fbox3,CURRENT_VALUE);
den_char =SUIT_getText(density, CURRENT_VALUE);
strcpy (bs, "bs_encode ");
strcat (bs, filel);
strcat (bs,"");
strcat (bs, file2);
strcat (bs,"");
strcat (bs,den_char);
strcat (bs,"");
strcat (bs, file3);
errornum = system(bs);
advisory(errornum);
break;

}
SUIT_destroyObject(bs_dBox);

}

void Quit (SUIT_object menu) {

/*This SUIT call is the thing that saves properties you interactively created
vice hard-coded*/

SUIT_done(S AVE_SUI_FILE, EXIT_APPLICATION);}

void Displ (SUIT_object menu){
SUIT_object d_h_button,d_fboxl,d_panel,d_dBox, djabel;

char *fdispl;
char xv[256];
int errornum;

d_panel = SUIT_createBulletinBoard("D Panel");
d_fboxl = SUIT_createFüeBrowser("d_barney","","Display ImageO",

"Select Display Image:",NULL);

103

d_h_button = SUIT_createButton("D_Help",HelpDisplay);

SUIT_changeObjectSize(d_panel,200,340);
SUIT_addChildToObject(d_panel,d_fboxl);
SUIT_addChildToObject(d_panel,d_h_button);
djabel = SUIT_createLabel("Display An Image");
SUIT_setFont(d_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(d_panel,dJabel);

SUIT_setViewport(d_label, VIEWPORT,
SUIT_mapToParent(d_label, 0.3,0.9,0.7,0.95));

SUIT_setViewport(d_fboxl, VIEWPORT,
SUIT_mapToParent(d_fboxl, 0.05,0.15,0.95,0.85));

SUIT_setViewport(d_h_button, VIEWPORT,
SUIT_mapToParent(d_h_button, 0.45,0.05,0.55,0.1));

d_dBox = SUIT_createOKCancelDialogBox("d_fred", d_panel, NULL);
SUIT_activateDialogBox(d_dBox);

switch (SUIT_getInteger(d_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
fdispl = SUIT_getText(d_fboxl, CURRENT_VALUE);
if(fdispl!=NULL){

strcpy (xv, "xv ");
strcat (xv, fdispl);
strcat (xv, "&");
errornum = system(xv);
advisory(errornum);

}
break;

}

SUIT_destroyObject(d_dBox);

}

/***************BjY[p RQB ENCODE)****************/
void BMP_RGB (SUIT_object menu) {

SUIT_object br_container, br_fboxl,br_fbox2,br_fbox3,
br_h_button, br_dBox,br_label;

104

char* filel;
char* file2;
char* file3;
char br[256];
int errornum;

br_container = SUIT_createBulletinBoard ("B R Container");
br_fboxl = SUIT_createFileBrowser(

"br_barney","","BR Filel","Select In Image",NULL);
br_fbox2 = SUIT_createFileBrowser(

,,br_wilma,,,"","BR File2",,,Select In Data",NULL);
br_fbox3 = SUIT_createFileBrowser(

,,br_dino","",,,BR Füe3","Select Out File",NULL);
br_h_button = SUrr_createButton("br_help'*,HelpBMP_RGB);

SUIT_changeObjectSize(br_container, 600, 340);

SUIT_addChildToObject(br_container,br_fboxl);
SUIT_addChildToObject(br_container,br_fbox2);
SUIT_addChüdToObject(br_container,br_fbox3);
SUIT_addChildToObject(br_container, br_h_button);
brjabel = SUIT_createLabel("RGB Vector Encode");
SUIT_setFont(br_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(br_container,br_label);

SUIT_setViewport(br_label, VIEWPORT,
SUIT_mapToParent(br_label, 0.3,0.9,0.7,0.95));

SUIT_setViewport(br_fboxl, VIEWPORT,
SUIT_mapToParent(br_fboxl, 0.05,0.05,0.3,0.85));

SUIT_setViewport(br_fbox2, VIEWPORT,
SUIT_mapToParent(br_fbox2,0.325,0.05,0.575,0.85));

SUIT_setViewport(br_fbox3, VIEWPORT,
SUIT_mapToParent(br_fbox3,0.6,0.05,0.85,0.85));

SUIT_setViewport(br_h_button, VIEWPORT,
SUIT_mapToParent(br_h_button, 0.88,0.43,0.97,0.50));

br_dBox = SUIT_createOKCancelDialogBox("br_rred", br_container, NULL);
SUIT_activateDialogBox(br_dBox);

switch (SUrr_getInteger(br_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
fuel = SUIT_getText(br_fboxl, CURRENT_VALUE)
file2 = SUrr_getText(br_fbox2, CURRENT_VALUE)
file3 = SUIT_getText(br_fbox3, CURRENT_VALUE)

105

strcpy (br, "rgb_steg");
strcat (br, filel);
strcat (br,"");
strcat (br, file2);
strcat (br,"");
strcat (br, file3);
errornum = system(br);
advisory (errornum);
break;

}

SUIT_destroyObject(br_dBox);

}

/***************BMP SIMPLE X (EXTRACT)****************/
void BMP_Simple_X (SUIT_object menu) {

SUIT_object bsx_container, bsx_fboxl,bsx_fbox2,bsx_h_button,
bsx_dB ox,bsx_label;

char* filel;
char* file2;
char bsx[256];
int errornum;

bsx_container = SUIT_createBulletinBoard ("BSX Container");
bsx_fboxl = SUIT_createFileBrowser(

"bsx_barney","M,"BSX Filel","Get Input Image",NULL);
bsx_fbox2 = SUIT_createFileBrowser(

"bsx_wilmaM,,,,,,"BSX Füe2",*'Get Output Data",NULL);
bsx_h_button = SUIT_createButton("bsx_help",HelpBMP_Simple_X);

SUIT_changeObjectSize(bsx_container, 400,340);

SUIT_addChildToObject(bsx_container, bsx_fbox 1);
SUIT_addChildToObject(bsx_container, bsx_fbox2);
SUIT_addChildToObject(bsx_container, bsx_h_button);
bsxjabel = SUIT_createLabel("Simple Extract");
SUIT_setFont(bsx_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(bsx_container,bsx_label);
SUIT_setViewport(bsx_label, VIEWPORT,

SUIT_mapToParent(bsx_label, 0.3,0.9,0.7,0.95));

106

SUIT_setViewport(bsx_fboxl, VIEWPORT,
SUIT_mapToParent(bsx_fboxl, 0.05,0.15,0.45,0.85));

SUIT_setViewport(bsx_fbox2, VIEWPORT,
SUIT_mapToParent(bsx_fbox2,0.55,0.15,0.95,0.85));

SUIT_setViewport(bsx_h_button, VIEWPORT,
SUIT_mapToParent(bsx_h_button, 0.45,0.05,0.55,0.1));

bsx_dBox = SUIT_createOKCancelDialogBox("bsx_fred", bsx_container, NULL);
SUIT_activateDialogBox(bsx_dBox);

switch (SUIT_getInteger(bsx_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
fuel = SUIT_getText(bsx_fboxl, CURRENT_VALUE);
file2 = SUTT_getText(bsx_fbox2, CURRENT_VALUE);
strcpy (bsx, "bs_extract ");
strcat (bsx, fuel);
strcat (bsx,"");
strcat (bsx, file2);
errornum = system(bsx);
advisory (errornum);
break;

}

SUIT_destroyObject(bsx_dBox);
}

/*****************gj^[p^Qg^ (EXTRACT)*****************/
void BMP_RGB_X (SUIT_object menu) {

SUIT_object brx_container, brx_fboxl,brx_fbox2, numbytes,
brx_h_button, brx_dBox, brxjabel, brxjabell;

char* file 1;
char* file2;
char brx[256];
long int stegbytes;
char* stegval;
int errornum;

brx_container = SUIT_createBulletinBoard ("BRX Container");
brx_fboxl = SUIT_createFileBrowser(

"bs_barney","","BRX Filel","Select Input Image",NULL);

107

brx_fbox2 = SUIT_createFileBrowser(
"brx_wilma","","BRX File2","Select Output Data",NULL);

brx_h_button = SUIT_createButton("brx_help",HelpBMP_RGB_X);
numbytes = SUIT_createTypeInBox("steg bytes encoded", NULL);
brxjabel = SUIT_createLabel("RGB Extract");
SUIT_setFont(brxJabel,FONT,GP_deiFont("times","bold",12));
brx_labell = SUIT_createLabel("Number of Encoded Bytes:");

SUIT_changeObjectSize(brx_container, 400,340);

SUIT_addChildToObject(brx_container,brx_fboxl);
SUIT_addChildToObject(brx_container, brx_fbox2);
SUIT_addChildToObject(brx_container, brx_h_button);
SUIT_addChildToObject(brx_container, numbytes);
SUIT_addChildToObject(brx_container,brx_label);
SUIT_addChildToObject(brx_container,brx_labell);
SUIT_setViewport(brx_label, VIEWPORT,

SUIT_mapToParent(brx_label, 0.3,0.9,0.7,0.95));

SUIT_setViewport(brx_fboxl, VIEWPORT,
SUIT_mapToParent(brx_fboxl, 0.05,0.15,0.45,0.85));

SUIT_setViewport(brx_fbox2, VIEWPORT,
SUIT_mapToParent(brx_fbox2, 0.55, 0.15, 0.95,0.85));

SUIT_setViewport(brx_h_button, VIEWPORT,
SUIT_mapToParent(brx_h_button, 0.85,0.05,0.95,0.1));

SUIT_setViewport(numbytes, VIEWPORT,
SUIT_mapToParent(numbytes, 0.45,0.05,0.65,0.1));

SUIT_setViewport(brx_labell, VIEWPORT,
SUIT_mapToParent(brx_labell, 0.05,0.05,0.4,0.1));

brx_dBox = SUIT_createOKCancelDialogBox("brx_fred", brx_container, NULL);

SUIT_activateDialogBox(brx_dBox);

switch (SUIT_getInteger(brx_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
filel = SUrr_getText(brx_fboxl, CURRENT_VALUE);
file2 = SUrr_getText(brx_fbox2, CURRENT.VALUE);
stegval = SUIT_getText(numbytes, CURRENT.VALUE);
strcpy (brx, "rgb_extract");
strcat (brx, filel);
strcat (brx,"");
strcat (brx, file2);
strcat (brx,"");
strcat (brx, stegval);

108

errornum = system(brx);
advisory(errornum);
break;

}

SUIT_destroyObject(brx_dBox);
}

void Gen_Diff (SUIT_object menu) {
SUIT_object gd_container, gd_fboxl,gd_fbox2,gd_fbox3,

gd_h_button, gd_dBox, gd_label;
char* filel;
char* file2;
char* file3;
char gd[256];
int errornum;

gd_container = SUIT_createBulletinBoard ("G D Container");
gd_fboxl = SUIT_createFileBrowser(

"gd_barney","","GD Füel","Name First BMP Image",NULL);
gd_fbox2 = SUIT_createFileBrowser(

,,gd_wüma","M,"GD File2","Name Second BMP Image",NULL);
gd_fbox3 = SUIT_createFileBrowser(

"gd_dino","","GD FUe3","Name Diff BMP Image",NULL);
gd_h_button = SUIT_createButton("gd_help",HelpGen_Diff);

SUIT_changeObjectSize(gd_container, 600, 340);

SUIT_addChildToObject(gd_container, gd_fboxl);
SUIT_addChüdToObject(gd_container, gd_fbox2);
SUIT_addChildToObject(gd_container, gd_fbox3);
SUIT_addChildToObject(gd_container, gd_h_button);
gdjabel = SUIT_createLabel("Generate A Diff Image");
SUIT_setFont(gd_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(gd_container,gd_label);
SUIT_setViewport(gd_label, VIEWPORT,

SUIT_mapToParent(gd_label, 0.3,0.9,0.7,0.95));

SUIT_setViewport(gd_fboxl, VIEWPORT,
SUIT_mapToParent(gd_fboxl, 0.05,0.05,0.3,0.85));

SUIT_setViewport(gd_fbox2, VIEWPORT,
SUIT_mapToParent(gd_fbox2,0.325,0.05,0.575,0.85));

109

SUIT_setViewport(gd_fbox3, VIEWPORT,
SUIT_mapToParent(gd_fbox3,0.6,0.05,0.85,0.85));

SUIT_setViewport(gd_h_button, VIEWPORT,
SUIT_mapToParent(gd_h_button, 0.88,0.43,0.97,0.50));

gd_dBox = SUIT_createOKCancelDialogBox("gd_fred", gd_container, NULL);
SUIT_activateDialogBox(gd_dBox);

switch (SUrr_getInteger(gd_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:
fuel = SUIT_getText(gd_fboxl, CURRENTFILE);
file2 = SUIT_getText(gd_fbox2, CURRENT_FILE);
file3 = SUrr_getText(gd_fbox3, CURRENT_FILE);
strcpy (gd, "compare ");
strcat (gd, filel);
strcat (gd,"");
strcat (gd, file2);
strcat (gd,"");
strcat (gd, file3);
errornum = system(gd);
advisory(errornum);
break;

}
SUIT_destroyObject(gd_dBox);

}

void genHistO
{

SUIT_object gh_h_button,gh_boundO,gh_bound 1 ,gh_label;
SUIT_object gh_bound2, gh_bound3, gh_bound4, gh_bound5,gh_labell;
SUIT_object gh_bound6, gh_bound7, gh_panel,gh_dBox,gh_label2,gh_label3;
SUIT_object gh_labelcO,gh_labelc 1 ,gh_labelc2,gh_labelc3,gh_labelc4;
SUIT_object gh_labelc5,gh_labelc6,gh_labelc7,gh_fboxl ,gh_fbox2,gh_f 1 ,gh_f2;
SUIT_objectgh_tpix, gh_col0,gh_coll,gh_col2,gh_col3,gh_col4,gh_col5,gh_col6;
SUIT_objectgh_col7,gh_label4,gh_label5,gh_label6;

/*

Using the same format described abovea bunch of scroller widgets and text boxes are
mapped to a panel. The trick isonce you get the numbers out of the file, noting the C
commands, to make them the CURRENTJVALUE property of the scroller and textbox
widgets.*/

110

FILE *infile;
char* fnamel[256];
char* fname2[256];
charflbuf[256];
charf2buf[256];
char tpixbuf[32];
char col0_buf[16]
char coll_buf[16]
char col2_buf[16]
char col3_buf[16]
char col4_buf[16]
char col5_buf[16]
char col6_buf[16]
char col7_buf[16]
intdiff_bit[8];
double bitscale[8];
int tot_pixels;
int i,j;
int errornum = 8;

/*Open the datafile*/
infile = fopen("hist.dat","r");
if(!(infile==NULL)){

fscanf(infile, "%s%s",fnamel,fhame2);
for (i=0; i < 8; i++){
fscanf(infde,"%d",&diff_bit[i]);

}
fscanf(infile,"%d,,,&tot_pixels);
for(j=0;j<8;j++){

bitscale[j] = (double)(100*diffJ)it[j])/tot_pixels;
}
fclose(infile);
gh_panel = SUIT_createBulletinBoard("GH Panel");
SUIT_setFont(gh_panel,FONT,GP_defFont("times","",12));

/*These are the bounded values I used to make the histogram. Setting these properties
constrains the displayed values from 0 to 100*/

gh_bound0 = SUIT_createBoundedValue("gh_barneyO", NULL);
SUIT_setEnumString(gh_boundO,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_boundO,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_bound0,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_boundO,GRANULARlTY, 1.0);
SUIT_setDouble(gh_boundO,CURRENT_VALUE,bitscale[0]);

111

gh_boundl = SUIT_createBoundedValue("gh_barneyl", NULL);
SUIT_setEnumString(gh_boundl,ACTIVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_boundl,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_boundl,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_boundl,GRANULARITY,1.0);
SUIT_setDouble(gh_boundl,CURRENT_VALUE,bitscale[l]);

gh_bound2 = SUIT_createBoundedValue("gh_bamey2", NULL);
SUIT_setEnumString(gh_bound2,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_bound2,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_bound2,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_bound2,GRANULARITY, 1.0);
SUIT_setDouble(gh_bound2,CURRENT_VALUE,bitscale[2]);

gh_bound3 = SUIT_createBoundedValue("gh_barney3", NULL);
SUIT_setEnumString(gh_bound3,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_bound3,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_bound3,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_bound3,GRANULARITY, 1.0);
SUIT_setDouble(gh_bound3,CURRENT_VALUE,bitscale[3]);

gh_bound4 = SUIT_createBoundedValue("gh_barney4", NULL);
SUIT_setEnumString(gh_bound4,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_bound4,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_bound4,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_bound4,GRANULARITY,1.0);
SUIT_setDouble(gh_bound4,CURRENT_VALUE,bitscale[4]);

gh_bound5 = SUIT_createBoundedValue("gh_barney5", NULL);
SUIT_setEnumString(gh_bound5,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_bound5,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_bound5,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_bound5,GRANULARiTY,1.0);
SUIT_setDouble(gh_bound5,CURRENT_VALUE,bitscale[5]);

gh_bound6 = SUIT_createBoundedValue("gh_barney6,,, NULL);
SUIT_setEnumString(gh_bound6,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_bound6,MINIMUM_VALUE,0.0);
SUIT_setDouble(gh_bound6,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_bound6,GRANULARITY, 1.0);
SUIT_setDouble(gh_bound6,CURRENT_VALUE,bitscale[6]);

gh_bound7 = SUIT_createBoundedValue("gh_barney7", NULL);
SUIT_setEnumString(gh_bound7,ACnVE_DISPLAY,"vertical thermometer");
SUIT_setDouble(gh_bound7,MINIMUM_VALUE,0.0);

112

SUIT_setDouble(gh_bound7,MAXIMUM_VALUE,100.0);
SUIT_setDouble(gh_bound7,GRANULARITY, 1.0);
SUIT_setDouble(gh_bound7,CURRENT_VALUE,bitscale[7]);

gh_h_button = SUIT_createButton("GH_Help",HelpDispl_Hist);

SUIT_changeObjectSize(gh_panel,500,350);
SUIT_addChildToObject(gh_panel,gh_bound0);
SUIT_addChildToObject(gh_panel,gh_boundl);
SUIT_addChildToObject(gh_panel,gh_bound2);
SUIT_addChildToObject(gh_panel,gh_bound3);
SUIT_addChüdToObject(gh_panel,gh_bound4);
SUIT_addChildToObject(gh_panel,gh_bound5);
SUIT_addChildToObject(gh_panel,gh_bound6);
SUIT_addChüdToObject(gh_panel,gh_bound7);
SUIT_addChildToObject(gh_panel,gh_h_button);
ghjabel = SUIT_createLabel("Diff Image Histogram");
SUIT_setFont(gh_label,FONT,GP_defFont("times","bold",12));
SUIT_setFont(gh_label,FONT,GP_defFont("times","bold",14));

SUIT_addChildToObject(gh_panel,gh_label);
SUIT_setViewport(gh_label, VIEWPORT,

SUIT_mapToParent(ghJabel, 0.6,0.95,0.8,0.99));
ghjabell = SUIT_createLabel("Füe 1:");
SUIT_addChildToObject(gh_panel,gh_label 1);
SUIT_setViewport(gh_labell, VIEWPORT,

SUIT_mapToParent(gh_labell, 0.03,0.95,0.1,0.98));
gh_label2 = SUIT_createLabel("Füe 2:");
SUIT_addChildToObject(gh_panel,gh_label2);
SUIT_setViewport(gh_label2, VIEWPORT,

SUIT_mapToParent(gh_label2,0.03,0.86,0.1,0.92));
gh_label3 = SUIT_createLabel("Total Diff Pixels:");
SUIT_addChildToObject(gh_panel,gh_label3);
SUIT_setViewport(gh_label3, VIEWPORT,

SUIT_mapToParent(gh_label3,0.03,0.81,0.25,0.85));
gh_label4 = SUIT_createLabel("100% ");
SUIT_addChildToObject(gh_panel,gh_label4);
SUIT_setViewport(gh_label4, VIEWPORT,

SUIT_mapToParent(gh_label4,0.1,0.76,0.13,0.79));
gh_label5 = SUIT_createLabel("0%n);
SUIT_addChildToObject(gh_panel,gh_label5);
SUIT_setViewport(gh_label5, VIEWPORT,

SUIT_mapToParent(gh_label5,0.1,0.15,0.13,0.17));
gh_label6 = SUIT_createLabel("b/p diff:");
SUIT_addChildToObject(gh_panel,gh_label6);
SUIT_setViewport(gh_label6, VIEWPORT,

113

SUIT_mapToParent(gh_label6,0.05,0.01,0.13,0.05));
/*These are just labels*/

ghJabelcO = SUIT_createLabel("l-3");
SUIT_addChildToObject(gh_panel,gh_labelcO);
SUIT_setViewport(gh_labelcO,VffiWPORT,

SUIT_mapToParent(gh_labelcO, 0.15,0.01,0.25,0.05));
ghjabelcl = SUIT_createLabel("4-6");
SUIT_addChildToObject(gh_panel,gh_labelcl);
SUIT_setViewport(gh_labelc 1, VIEWPORT,

SUIT_mapToParent(gh_labelcl, 0.25,0.01,0.35,0.05));
gh_labelc2 = SUIT_createLabel("7-9");
SUIT_addChildToObject(gh_panel,gh_labelc2);
SUIT_setViewport(gh_labelc2,VffiWPORT,

SUIT_mapToParent(gh_labelc2,0.35,0.01,0.45,0.05));
gh_labelc3 = SUIT_createLabel("10-12");
SUIT_addChildToObject(gh_panel,gh_labelc3);
SUIT_setViewport(gh_labelc3, VIEWPORT,

SUIT_mapToParent(gh_labelc3,0.45,0.01,0.55,0.05));
gh_labelc4 = SUIT_createLabel("13-15");
SUIT_addChildToObject(gh_panel,gh_labelc4);
SUIT_setViewport(gh_labelc4, VIEWPORT,

SUIT_mapToParent(gh_labelc4,0.55,0.01,0.65,0.05));
gh_labelc5 = SUIT_createLabel("16-18");
SUIT_addChildToObject(gh_panel,gh_labelc5);
SUIT_setViewport(gh_labelc5, VIEWPORT,

SUIT_mapToParent(gh_labelc5,0.65,0.01, 0.75,0.05));
gh_labelc6 = SUIT_createLabel(" 19-21");
SUIT_addChildToObject(gh_panel,gh_labelc6);
SUIT_setViewport(gh_labelc6, VIEWPORT,

SUIT_mapToParent(gh_labelc6,0.75,0.01,0.85,0.05));
gh_labelc7 = SUIT_createLabel("22-24");
SUIT_addChildToObject(gh_panel,gh_labelc7);
SUIT_setViewport(gh_labelc7, VIEWPORT,

SUIT_mapToParent(gh_labelc7,0.85,0.01,0.95,0.05));

/*These are the boxes that display the file names*/
gh_fl = SUIT_createLabel("fbox 1");
sprintf(flbuf,"%s",fnamel);
SUIT_setText(gh_f 1 ,LABEL,f lbuf);
SUIT_addChildToObject(gh_panel,gh_fl);
SUIT_setViewport(gh_fl, VIEWPORT,

SUIT_mapToParent(gh_f 1,0.12,0.95,0.55,0.98));
SUIT_setEnumString(gh_fl,JUSTinCATION,"left");
gh_f2 = SUIT_createLabel("fbox 2");
sprintf(ßbuf,"%s",fname2);
SUIT_setText(gh_f2,LABEL,f2buf);

114

SUIT_addChildToObject(gh_panel,gh_f2);
SUIT_setViewport(gh_f2, VIEWPORT,

SUIT_mapToParent(gh_f2,0.12,0.86,0.55,0.92));
SUIT_setEnumString(gh_f2,JUSTinCATION,"left");
gh_tpix = SUIT_createLabel("tot pixels");
sprintf(tpixbuf," %d" ,tot_pixels);
SUIT_setText(gh_tpix,LABEL,tpixbuf);
SUIT_addChildToObject(gh_panel,gh_tpix);
SUIT_setViewport(gh_tpix, VIEWPORT,

SUIT_mapToParent(gh_tpix, 0.27,0.81,0.5,0.85));
SUIT.setEnumStringCgh.tpix^STIFICATION/'left");
gh_col0 = SUIT_createLabel("col 0");
sprintf(colO_buf,"%d",diff_bit[0]);
SUIT_setText(gh_colO,LABEL,colO_buf);
SUIT_addChildToObject(gh_panel,gh_col0);
SUIT_setViewport(gh_colO, VIEWPORT,

SUIT_mapToParent(gh_colO, 0.15,0.1,0.25,0.14));
gh_coll = SUIT_createLabel("col 1");
sprintf(coll_buf,"%d",diff_bit[l]);
SUIT_setText(gh_coll,LABEL,coll_buf);
SUIT_addChildToObject(gh_panel,gh_coll);
SUIT_setViewport(gh_coll, VIEWPORT,

SUIT_mapToParent(gh_coll, 0.25,0.07,0.35,0.1));
gh_col2 = SUIT_createLabel("col 2");
sprintf(col2_buf,"%d",diff_bit[2]);
SUIT_setText(gh_col2,LABEL,col2_buf);
SUIT_addChildToObject(gh_panel,gh_col2);
SUIT_setViewport(gh_col2, VIEWPORT,

SUIT_mapToParent(gh_col2,0.35,0.1,0.45,0.14));
gh_col3 = SUIT_createLabel("col 3");
sprintf(col3_buf,"%d",diff_bit[3]);
SUIT_setText(gh_col3,LABEL,col3_buf);
SUIT_addChildToObject(gh_panel,gh_col3);
SUIT_setViewport(gh_col3, VIEWPORT,

SUIT_mapToParent(gh_col3,0.45,0.07,0.55,0.1));
gh_col4 = SUIT_createLabel("col 4");
sprintf(col4_buf,"%d",diff_bit[4]);
SUIT_setText(gh_col4,LABEL,col4_buf);
SUIT_addChildToObject(gh_panel,gh_col4);
SUIT_setViewport(gh_col4, VIEWPORT,

SUIT_mapToParent(gh_col4,0.55,0.1,0.65,0.14));
gh_col5 = SUIT_createLabel("col 5");
sprintf(col5_buf,"%d",diff_bit[5]);
SUIT_setText(gh_col5,LABEL,col5_buf);
SUIT_addChildToObject(gh_panel,gh_col5);
SUIT_setViewport(gh_col5, VIEWPORT,

115

SUIT_mapToParent(gh_col5,0.65,0.07,0.75,0.1));
gh_col6 = SUIT_createLabel("col 6");
sprintf(col6_buf,"%d",diff_bit[6]);
SUIT_setText(gh_col6,LABEL,col6_buf);
SUIT_addChildToObject(gh_panel,gh_col6);
SUIT_setViewport(gh_col6, VIEWPORT,

SUIT_mapToParent(gh_col6,0.75,0.1,0.85,0.14));
gh_col7 = SUIT_createLabel("col 7");
sprintf(col7_buf,"%d",diff_bit[7]);
SUIT_setText(gh_col7,LABEL,col7_buf);
SUIT_addChüdToObject(gh_panel,gh_col7);
SUIT_setViewport(gh_col7, VIEWPORT,

SUIT_mapToParent(gh_col7,0.85,0.07,0.95,0.1));
SUIT_setViewport(gh_h_button, VIEWPORT,

SUIT_mapToParent(gh_h_button, 0.88,0.93,0.98,0.98));
SUIT_setViewport(gh_boundO, VIEWPORT,

SUIT_mapToParent(gh_boundO, 0.15,0.15,0.25,0.8));
SUIT_setViewport(gh_boundl, VIEWPORT,

SUIT_mapToParent(gh_boundl, 0.25,0.15,0.35,0.8));
SUIT_setViewport(gh_bound2, VIEWPORT,

SUIT_mapToParent(gh_bound2,0.35,0.15,0.45,0.8));
SUIT_setViewport(gh_bound3, VIEWPORT,

SUIT_mapToParent(gh_bound3,0.45,0.15,0.55,0.8));
SUIT_setViewport(gh_bound4, VIEWPORT,

SUIT_mapToParent(gh_bound4,0.55,0.15,0.65,0.8));
SUIT_setViewport(gh_bound5, VIEWPORT,

SUIT_mapToParent(gh_bound5,0.65,0.15,0.75,0.8));
SUIT_setViewport(gh_bound6, VIEWPORT,

SUIT_mapToParent(gh_bound6,0.75,0.15,0.85,0.8));
SUIT_setViewport(gh_bound7, VIEWPORT,

SUIT_mapToParent(gh_bound7,0.85,0.15,0.95,0.8));
gh_dBox = SUIT_createOKCancelDialogBox("gh_fred", gh_panel, NULL);
SUIT_activateDialogBox(gh_dBox);

switch (SUrr_getInteger(gh_dBox, "button pressed")) {
case REPLY_CANCEL:

break;
case REPLY_OK:

break;
}

SUIT_destroyObject(gh_dBox);
}
else{

advisory(errornum);

116

Me************************* ADVISORY ******************/

/* This is the function that displays advisory dialog boxes. Note that if 0 is
returned for normal termination, nothing gets displayed, and since genHist()
isnt a system call, you dont have to multiply the exit value by 256 to create it
*/
int advisory(int error_val){

switch(error_val) {
case 0:
break;
case 8:

SUIT_inform("Could not open histdat.");
break;
case 256:

SUlT_inform("Insufficient number of parameters-aborted.");
break;
case 512:

SUIT_inform("Could not open input image file-aborted.");
break;
case 768:

SUIT_inform("Could not open output file - aborted.");
break;
case 1024:

SUIT_inform("Textfüe could not be opened.");
break;
case 1280:

SUIT_inform("First input image file could not be opened - aborted.");
break;
case 1792:

SUIT_inform("Invalid entry for bytes encoded - aborted.");
break;
case 2304:

SUIT_inform("Bit density exceeds range.");
break;
case 2560:

SUIT_inform("Textfile encoded at this density exceeds storage capacity of image
file.");

break;
case 2816:

SUIT_inform("Textfile size is larger than image storage capacity using RGB
Vector encoding.");

117

break;
case 3072:

SUIT_inform("Remember the input file size - available from terminal window.");
break;
case 3328:

SUIT_inform("These files are not the same size - aborting");
break;
default:

SUIT_inform("Rerurned Default");
break;

}

/*lf *ls *&* ^» *L ^ ^U 4* ^^ ^^ ^U ^^ ^^ ^^ ^^ ^^ ^* ^^ ^^ ^^ 1 iff A TIL T ^^ ^^ ^^ ^^ ^^ ^^ fit ^* ^^ ^* ^^ ^^ ^* ^* ^* ^* ^* ^* *1* ^1* *I* ^* ^* / 1* "I* "I* 1» *J**T» *T* *T* *T» T* *^ ^» *1» T* 's» ^* *l* *^ *I* *!* [\/l /\ I rVI *^ *!• ••* •!• *T* *T* T* *T* T* *I» *J» *I» T* "T* *(* "T" ^ "^ *n *^ *P ^* ^* /

void main (int arge, char *argv[])
{

SUIT_object menuBar, fileMenu, encodeMenu,extractMenu, displayMenu,helpMenu;
SUIT_object main_label;

/*
This gets suit to hunt down the properties file and apply the property values to widgets*/

SUIT_init(argv[0]);

/*This adds submenu selections to the menu buttons as pulldown menus*/
fileMenu = SUIT_createPullDownMenu ("File");
SUIT_addToMenu(fileMenu, "Convert Format", Convert);
SUIT_addToMenu(fileMenu, "Delete A File", Delete);
SUIT_addToMenu(fileMenu, "Exit", Quit);

encodeMenu = SUIT_createPullDownMenu ("Encode");
SUIT_addToMenu(encodeMenu, "Simple Replace (.BMP)", BMP_Simple);
SUIT_addToMenu(encodeMenu, "RGB Vector (.BMP)", BMP_RGB);

extractMenu = SUIT_createPullDownMenu ("Extract");
SUIT_addToMenu(extractMenu, "Simple Replace Extract (.BMP)",BMP_Simple_X);
SUIT_addToMenu(extractMenu, "RGB Vector Extract (.BMP)", BMP_RGB_X);

displayMenu = SUIT_createPullDownMenu ("Display");
SUIT_addToMenu(displayMenu, "Display Image", Displ);
SUIT_addToMenu(displayMenu, "Generate Diff Image", Gen_Diff);
SUIT_addToMenu(displayMenu, "View Histogram", genHist);

helpMenu = SUIT_createPullDownMenu ("Help Menu");
SUIT_addToMenu(helpMenu, "Browse Help", GetHelpBox);

118

SUIT_addToMenu(helpMenu, "About Help", AboutHelpBox);

/* the menu bar packs the menu buttons left to right */
menuBar = SUIT_createMenuBar("Steganography tool");
SUIT_addChildToObject(menuBar,fileMenu);
SUIT_addChildToObject(menuBar, encodeMenu);
SUIT_addChildToObject(menuBar, extractMenu);
SUIT_addChildToObject(menuBar, displayMenu);
SUIT_addChildToObject(menuBar, helpMenu);

mainjabel = SUIT_createLabel("Steganography Toolbox");
SUIT_setFont(main_label,FONT,GP_defFont("times","bold",12));

/* This is the command to do the external control loop. Its a nonterminating
while loop that checks if any widgets have something to pass*/

SUIT_beginStandardApplication();
}

3. TOOLBOX_HELP.H

/* Tide: Toolbox_Help.H
AuthonLT Dave Wootten
Purpose: This file contains all the help-related functions:

- help browser callbacks
- topical help panels*/

void HelpConvert(){
SUIT_object h_c_panel,h_c_dbox;
char* Notes = "These are the Convert Panel Help Notes.W;
h_c_panel = SUIT_createTextBox("convert notes",Notes);
h_c_dbox = SUIT_createOKCancelDialogBox("H C Box", h_c_panel,NULL);
SUIT_activateDialogBox(h_c_dbox);
switch (SUrr_getInteger(h_c_dbox, "button pressed")){

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}

}

SUIT_destroyObject(h_c_dbox);

void HelpDelete(){
SUIT_object h_df_panel,h_df_dbox;
char* Notes = "These are the Delete File Panel Help Notes.W;

119

h_df_panel = SUIT_createTextBox("del file notes",Notes);
h_df_dbox = SUIT_createOKCancelDialogBox("D F Box", h_df_panel,NULL);
SUIT_activateDialogBox(h_df_dbox);
switch (SUIT_getInteger(h_df_dbox, "button pressed"))!

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}
SUIT_destroyObject(h_df_dbox);

}
void HelpBMP_Simple(){
SUIT_objecth_bs_panel,h_bs_dbox;
char* Notes = "These are the Simple Replacement Panel Help Notes.Click OK to con
tinue";
h_bs_panel = SUIT_createTextBox("bs notes",Notes);
h_bs_dbox = SUrr_createOKCancelDialogBox("H BS Box", h_bs_panel,NULL);
SUIT_activateDialogBox(h_bs_dbox);
switch (SUIT_geÜnteger(h_bs_dbox,"button pressed")) {

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}
SUIT_destroyObject(h_bs_dbox);

}

void HelpExit(){
SUIT_object h_e_panel,h_e_dbox;
char* Notes = "These are the Exit Panel Help Notes.Nn";
h_e_panel = SUIT_createTextBox("exit notes",Notes);
h_e_dbox = SUIT_createOKCancelDialogBox("H E Box", h_e_panel,NULL);
SUIT_activateDialogBox(h_e_dbox);
switch (SUrr_getInteger(h_e_dbox,"button pressed")) {

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}
SUIT_destroyObject(h_e_dbox);

}

void HelpDisplay(){

120

SUIT_object h_d_panel,h_d_dbox;
char* Notes = "These are the Display Panel Help Notes.Nn";
h_d_panel = SUIT_createTextBox("display notes",Notes);
h_d_dbox = SUIT_createOKCancelDialogBox("H D Box", h_d_panel,NULL);
SUIT_activateDialogBox(h_d_dbox);
switch (SUIT_getInteger(h_d_dbox,"button pressed")){

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}
SUIT_destroyObject(h_d_dbox);

}

void HelpBMP_RGB(){
SUIT_objecth_br_panel,h_br_dbox;
char* Notes = "These are the RGB Vector Panel Help Notes.Nn";
h_br_panel = SUIT_createTextBox("bmp rgb notes",Notes);
h_br_dbox = SUIT_createOKCancelDialogBox("H BR Box", h_br_panel,NULL);
SUIT_activateDialogBox(h_br_dbox);
switch (SUIT_getInteger(h_br_dbox,"button pressed")) {

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}

}

SUIT_destroyObject(h_br_dbox);

void HelpBMP_Simple_X(){
SUIT_objecth_bsx_panel,h_bsx_dbox,bsx_label;
char* Notes = "These are the Simple Extract Panel Help Notes.Nn";
h_bsx_panel = SUIT_createTextBox("bsx notes",Notes);
h_bsx_dbox = SUlT_createOKCancelDialogBox("H BSX Box", h_bsx_panel,NULL);
SUIT_activateDialogBox(h_bsx_dbox);
switch (SUlT_getInteger(h_bsx_dbox, "button pressed")) {

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

SUIT_destroyObject(h_bsx_dbox);

121

void HelpBMP_RGB_X(){
SUIT_object h_brx_panel,h_brx_dbox;
char* Notes = "These are the BMP RGB Extract Panel Help Notes.Nn";
h_brx_panel = SUIT_createTextBox("brx notes",Notes);
h_brx_dbox = SUTT_createOKCancelDialogBox("H BRX Box", h_brx_panel,NULL);
SUIT_activateDialogBox(h_brx_dbox);
switch (SUIT_getInteger(h_brx_dbox, "button pressed"))!

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}

}

SUIT_destroyObject(h_brx_dbox);

voidHelpGen_Diff(){
SUIT_object h_gd_panel,h_gd_dbox;
char* Notes = "These are the Generate Difference Image Panel Help Notes.Nn";
h_gd_panel = SUIT_createTextBox("gen diff notes",Notes);
h_gd_dbox = SUIT_createOKCancelDialogBox("G D Box", h_gd_panel,NULL);
SUIT_activateDialogBox(h_gd_dbox);
switch (SUIT_getInteger(h_gd_dbox,"button pressed")){

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}

}

SUIT_destroyObject(h_gd_dbox);

void HelpDispl_Hist(){
SUIT_object h_dh_panel,h_dh_dbox;
char* Notes = "These are the Display Histogram Panel Help Notes.Nn";
h_dh_panel = SUIT_createTextBox("displ hist notes",Notes);
h_dh_dbox = SUIT_createOKCancelDialogBox("D H Box", h_dh_panel,NULL);
SUIT_activateDialogBox(h_dh_dbox);
switch (SUrr_getInteger(h_dh_dbox, "button pressed"))!

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}
SUIT_destroyObject(h_dh_dbox);

122

void HelpHelpOl
SUIT_object h_h_panel,h_h_dbox;
char* Notes = "These are the Help Panel Help Notes.W;
h_h_panel = SUIT_createTextBox("help notes",Notes);
h_h_dbox = SUIT_createOKCancelDialogBox("H H Box", h_h_panel,NULL);
SUIT_activateDialogBox(h_h_dbox);
switch (SUrr_getInteger(h_h_dbox,"button pressed")){

case REPLY_CANCEL:
break;
case REPLY_OK:
break;

}
SUIT_destroyObject(h_h_dbox);

}

void GetHelpTopic(SUIT_object scrollbox){
char* h_val;
h_val = SUIT_getText(scrollbox,CURRENT_VALUE);
if (strcmp(h_val,"Convert")==0){

HelpConvert();
}
else if (strcmp(h_val,"Delete File")==0){

HelpDeleteO;
}

else if (strcmp(h_val,"Display lmage")==0){
HelpDisplayO;

}
else if (strcmp(h_val,"Exit")==0){

HelpExit();
}

else if (strcmp(h_val,"Help")==0){
HelpHelpO;

}
else if (strcmp(h_val,"RGB Vector")==0){

HelpBMP_RGB();
}

123

else if (strcmp(h_val,"RGB Vector Extract")==0){
HelpBMP_RGB_X();

}
else if (strcmp(h_val,"Simple Replace")==0){

HelpBMP_Simple();
}
else if (strcmp(h_val,"Simple Replace Extract")==0){

HelpBMP_Simple_X();
}
else if (strcmp(h_val,"Generate Diff lmage")==0){

HelpGen_Diff();
}
else if (strcmp(h_val,"Display Histogram")==0){

HelpDispl_Hist();
}

}
void GetHelpBox(SUrT_object menu) {

SUIT_object h_browser,h_dbox,h_panel, hjabel;
char* HelpTopics[] = {"Convert","Delete File","Display Image","Exit","Help",

"RGB Vector","RGB Vector Extract","Simple Replace'V'Simple Replace Extract", "Ge
nerate Diff Image","Display Histogram"};

h_panel = SUIT_createBulletinBoard("Help Browse");
h_browser = SUIT_createScrollableList("help list",NULL);
SUIT_changeObjectSize(h_panel,200,130);
SUIT_addChildToObject(h_panel,h_browser);
hjabel = SUIT_createLabel("Help Browser");
SUIT_setFont(h_label,FONT,GP_defFont("times","bold",12));
SUIT_addChildToObject(h_panel,h_label);
SUIT_setViewport(h_label, VIEWPORT,

SUIT_mapToParent(h_label, 0.3,0.9,0.7,0.95));
SUIT_setViewport(h_browser, VIEWPORT,

SUIT_mapToParent(h_browser, 0.05,0.05,0.95,0.85));

SUIT_setTextList(h_browser,LIST,SUIT_defTextList (HelpTopics, 11));
h_dbox = SUIT_createOKCancelDialogBox("H Box", h_panel,NULL);

SUIT_activateDialogBox(h_dbox);
switch (SUIT_getInteger(h_dbox,"button pressed"))!

case REPLY_CANCEL:
break;
case REPLY_OK:

GetHelpTopic(h_browser);
break;

}
SUIT_destroyObject(h_dbox);

)
}

124

LIST OF REFERENCES

Anderson, R., "Workshop on Information Hiding", http://www.cl.cam.ac.uk/users/rjal4/
ihws.html, 1996.

Aura,T., "Invisible Communication", ftp://saturn.hut.fi/pub/aaura/stell95.ps, 1995.

Arachelian, R. A., White Noise Storm (shareware), ftp://ftp.csua.berkeley.edu/pub/
cypherpunks/steganography/wns210.zip, 1994.

Black Wolf (alias), StegoDOS -Black Wolfs Picture Encoder Version 0.90a (public
domain software), ftp://ftp.csua.berkeley.edu/pub/cypherpunks/steganography/
stegodos.zip, 1994.

Brown, A., "Steganography", ftp://fto.crl.com/users/ro/smart/tfp/steganography.htrnl,
1994.

Brown, A., S-Toolsfor Windows (shareware), ftp://ftp.dsi.vnimi.it/. 1/security/crypt/codes/
s-tools.zip, 1994.

Con way, M. et. al., A Tutorial for SUIT, the Simple User Interface Toolkit, University of
Virginia, (1992).

Cornsweet, T. N., Visual Perception, Academic Press, 1970.,pp. 135-198,384-418.

Currie, D. and Campbell, H. implementing and Efficiency of Steganographic Techniques
in Bitmapped Images and Embedded Data Survivability Against Lossy Compression
Schemes (Thesis), Naval Postgraguate School, 1996.

Daley, M. L., R. C. Watzke, and M. C. Riddle, "A Model for the Apparent Decrease in
Optical Transmittance of the Diabetic Eye", IEEE Trans, on Biomedical Engineering,

125

Volume 39, Number 1, January 1992.

BiomedicalEngineering,Volume 39, Number 1, January 1992.

Johnson, N, "Steganography", http://www.patriot.net/users/johnson/html/neil/stegdoc/
stegdoc.html, 1996.

Kiger, J. I., "The Depth/Breadth Tradeoff in the Design of Menu-Driven User Interfaces",
Internationaljournal of Man-Machine Studies, Volume 20 (1984), pp. 201-213.

Kuhn, M., (untitled), Steganography Newsgroup Electronic Mail Posting, March 7,1995.

Kurak, C and J. McHugh, "A Cautionary Note on Image Downgrading", IEEE Eighth
Annual Computer Security Applications Conference, 1992.

Landover, T. K. and D. W. Nachbar, "Selection FromAlphabetic and Numeric Menu
Trees Using a Touch Screen: Breadth, Depth, and Width", Proceedings of Human Factors
in Computing Systems,ACM SIGCHI, New York, April 1985, pp. 73-78.

Machado, R., "Announcing Stego Version 1.0a2 (shareware), http://www.fqa.com/
romana/romansoft/Stegola2.Readme.txt, November 28,1993.

Maroney, C, Hide and Seek (public domain software), ftp://ftp.csua.berkeley.edu/pub/
cypherpunks/steganography/hdsk41 b. zip, 1994.

Murray, J. D., and W. VanRyper, Encyclopedia of Graphics File Formats, O'Reilly and
Associates, Inc., 1994, pp. 7-16,125-170.

Norman, K. 1., and J. P. Chin, "The Effect of Tree Structure on Search in a Hierarchical
Menu-Driven Selection System", Behavior and Information Technology, Volume 7,1988,
pp.51-65.

Paine, D. P., Aerial Photography and Image Interpretation for Resource Management,
John Wiley and Sons, 1981, pp. 251-278.

Riggs, L.A., F. Ratcliff, J. C. Cornsweet, and T. N. Cornsweet, "The Disappearance of

126

Steadily Fixated Visual Test Objects", Journal of the Optical Society of America, Volume
43, pp 495-301.

Rushton, W. A. H., "Cone Pigment Kinetics in the Protanope", Journal of Physiology
(London), Volume 186,1963.

Russ, J. C, The Image Processing Handbook, IEEE Press, 1995, pp 32-48.

Sabins, F. F., Remote Sensing Principles and Interpretation, W. H. Freeman and Co.,
1978, pp. 18-21.

Sheppard. J. J., Human Color Perception, American Elsevier Publishing Co., 1968.

Schneiderman, B., Designing the User Interface, Second Edition, Addison-Wesley
Publishing Co.,1992, pp. 97-137.

Shimeall, T. J., CS 4540 (Software Testing) Class Notes, Naval Postgraduate School,
January 1996.

Wald, G.„ "The Receptors for Human Color Vision", Science, Volume 145, pp 1007-1017.

Young, N. Simple User Interface Toolkit, ftp://suit@uvacs.cs.Virginia.EDU, 1990.

127

128

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center
8725 John J. Kingman Rd., STE 0944
Ft. Belvoir,VA 22060-6218

2. Dudley Knox Library
Naval Postgraduate School
411 Dyer Rd.
Monterey, CA 93943-5101

3. Chairman, Code CS/LT
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5118

4. Raymond Isbell
Central Imagery Office
8401 Old Courthouse Road
Vienna VA 22182-3280

5. Dr. Blaine Burnham
National Security Agency
Research and Development Building
R23
9800 Savage road
Fort Meade MD 20755-6000

6. William Marshall
National Security Agency
Research and Development Building
R23
9800 Savage road
Fort Meade MD 20755-6000

Dr. Cynthia E. Irvine
Computer Science Department
Code CS/Ic
Naval Postgraduate School
Monterey, CA 93943-5118

129

8. Dr Harold Fredericksen
Mathematics Department, Code MA/FS
Naval Postgraduate School
Monterey, CA 93943-5118

9. Dr. Michael J. Zyda
Computer Science Department
Code CS/Zk
Naval Postgraduate School
Monterey, CA
93943-5118

10. LT Daniel L. Currie HI
Fleet Information Warfare Center
2555 Amphibious Drive
NAB Little Creek
Norfolk, VA 23521-3225

11. LT Hannelore Campbell.
USS BOXER LDH 4
FPO AP 96661

12. LT David R. Wootten
Naval Reserve readiness Command, Region ONE
344 Easton Street
Newport, RI02841-1515

130

